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1. Introduction 
The purpose of this project was to attempt to simulate rainbow refraction in the ray tracer. After 
a ray enters a specific medium, it should refract and give an effect similar to what is shown in 
Figure 1. 
 

 
Figure 1: Rainbow refraction through a prism 

 
For the rainbow refraction, we would like the light to diffuse in multiple directions after exiting 
the medium. This is accomplished using photon mapping. Because we’re looking for a 
rainbow-like effect, treating the photon mapping in terms of RGB doesn’t make sense. Instead, 
we’ll be treating rays of light as wavelengths instead to allow simpler construction of the 
rainbow effect. 
 
2. Design 
This project mostly extends on the photon mapping advanced checkpoint. When light passes 
through a transmissive medium, some of it gets filtered out, and in the ray tracer, each photon 
has a probability of passing through the medium or reflecting. 
 
The tricky part is that if it does transmit, it should not only refract, but each photon refracts 
differently based on its wavelength because of a property known as dispersion. This is how the 
rainbow effect is achieved; photons of longer wavelengths will have a lower index of refraction 
(and thus bend less), and photons of shorter wavelengths will have a higher index of refraction. 
This is achieved by adjusting the refractive index based on the wavelength of the photon. To get 
into some details: the primary index of refraction is based on a principal wavelength of 600nm, 
and the index of refraction is adjusted linearly around this principal point. The slope of this 
adjustment determines whether the resulting rainbow spectrum is wide or narrow. 



 
In standard photon mapping, each photon is spawned with the color of the light source. But this 
is problematic – if every photon has the same initial color, we cannot determine which colors 
were refracted in different directions. To solve this issue, we decided to use a Monte Carlo 
method and spawn each photon with a random color (more on this below). 
 
In order to adjust the index of refraction based on wavelength, we had to determine the 
wavelength of each photon cast. Originally, this was achieved by converting each photon’s RGB 
value into wavelengths and calculating the refractive index from the derived wavelength. To do 
so, we converted the RGB values into HSV color space and then used the hue value to 
approximate the wavelength. This gives reasonable results, but we were not completely satisfied 
because it did not accurately resemble the amount of each color you would expect to see in the 
visible spectrum. To be more specific, the regions of red were very small, and some of the red 
even started to “bleed” into the purple region, and the cyan and yellow regions were 
unreasonably large. For the final product, this was modified so that instead of spawning photons 
of different RGB values, photons are spawned with a specific wavelength, and in order to 
determine the color at each point from the photon map, wavelengths are first converted back into 
RGB values and then averaged. The resulting image depicted the distribution of the visible 
spectrum much more accurately. 
 
Another parameter we found we the need to tweak was the distribution of color / wavelengths of 
the spawned photons. When we were using RGB values for the photons, two methods were tried. 
First, a uniform distribution: each color between (0, 0, 0) and (512, 512, 512) had an equal 
chance of being spawned (the values went up to 512 in order for the average color to be 
approximately (255, 255, 255)). This gave some good-looking results that can be seen below. 
But we weren’t satisfied that photons could have near-white color. So our second attempt was to 
spawn photons having a random hue in HSV space (and 100% saturation and value), in an 
attempt to simulate a random wavelength. This also gave reasonable results, but colors seemed to 
be far too saturated, so the image looked a bit unrealistic. After we switched to wavelength-based 
photons, the distribution was now only one-dimensional. At first, we simply spawned 
wavelengths uniformly in the visible range. This gave some nice results initially, but the color of 
the light source appeared rather yellow. To combat this, we tried some other physically-based 
distributions, including one based on Wien’s approximation, which approximately follows the 
distribution of wavelengths for a blackbody. This gave some very nice, tweakable results that 
look more like natural sunlight. 
 
  



3. System 
This project was an extension of the ray tracer with the KD-tree and photon mapping advanced 
checkpoints. The final architecture looked very similar to what was in the ray tracer at this point 
in the semester, and most modifications were not to the architecture, but to the functions that 
calculated the results of the photon mapping – the ray tracing code and object materials were the 
biggest pieces that changed, along with the addition of code to implement the photon mapping 
itself including the kd-tree for storing photons and its associated algorithms. 
 
The program is designed to be fairly efficient, so that we could simulate many thousands of 
photons efficiently. For example, the program uses multiple threads for rendering, photons are 
stored in a kd-tree, and the nearest-neighbor search makes use of a max heap to maximize 
efficiency. 
 
4. Results 
There are two sets of results that correspond to our rainbow refraction. The first set is using a 
more narrow beam of light, so the individual details are more visible here. The second set is 
using a wider beam of light, which is a bit more visually appealing as the rainbow is more 
vibrant here. 
 
All images labeled “RGB” are images that were developed using our original, RGB-first method 
– photons are generated with random RGB values, and then their wavelength calculated. Images 
labeled “Wavelength” are images that were developed using the wavelength-first approach, 
where photons were spawned with random wavelengths, and RGB values calculated from those 
wavelengths. Images labeled as “Individual Photons” correspond to what the image looks like 
when displaying each individual photon without averaging. Images labeled as “Final Image” 
correspond to the final product. Note that not every individual photon is drawn – only a subset 
which happen to line up nicely in the center of the pixels. This doesn’t appear to affect the results 
too much. 
  



4.1. Narrow Beams 
RGB, Random Hue: Individual Photons 

 
  



RGB, Random Hue: Final Image 

 
  



RGB, Uniform Distribution: Individual Photons 

  



RGB, Uniform Distribution: Final Image 

 
  



Wavelength, Uniform Distribution: Individual Photons 

 
  



Wavelength, Uniform Distribution: Final Image 

 
  



Wavelength, Wien’s Approximation-Based: Individual Photons 

 
  



Wavelength, Wien’s Approximation-Based: Final Image 

 
  



4.2. Wide Beams 
Hue: Individual Photons 

  



Hue: Final Image 

 
  



RGB, Uniform Distribution: Individual Photons 

 
  



RGB, Uniform Distribution: Final Image 

  



Wavelength, Uniform Distribution: Individual Photons 

  



Wavelength, Uniform Distribution: Final Image 

 
  



Wavelength, Wien’s Approximation-Based: Individual Photons 

 
  



Wavelength, Wien’s Approximation-Based: Final Image 

 
  



4.3. Other Results 
We also attempted to use this method on a sphere and other transparent objects to see how well 
this would replicate a caustics effect. Here are some of the resulting images: 
 

 
 



 
 



 
 



 
 
In addition to these, we developed several animated versions of the results, links to which 
follow: 

1. Prism: https://youtu.be/mZRwXQ-hArE 
2. Sphere: https://youtu.be/J4a_0Gij8jY 
3. Several GIFs available on Kyle’s website: 

http://www.kylecutler.com/courses/cs711/project/  

https://youtu.be/mZRwXQ-hArE
https://youtu.be/J4a_0Gij8jY
http://www.kylecutler.com/courses/cs711/project/


5. Issues / Challenges 
The result is not perfect. Some of the current issues include: 

● The parameters for photon mapping must be adjusted by hand in order to attain a good 
result for different setups. For example, the sphere caustics image required a different 
number of photons spawned and a different number of closest neighbors than the prism. 

● Material colors are still represented using RGB, so the means by which photons are 
reflected from surfaces are imperfect – a better solution would use reflectance values 
measured at several wavelengths to represent the colors. 

● The reverse effect does not work – images viewed through a transparent surface will not 
have any color aberration – in order to do this, the rays spawned from the camera would 
need to have a wavelength attached to them. 

● Because the photons are spawned with random wavelengths, there is color noise visible 
on diffuse surfaces, even when the photons have not been diffracted. 

Problems we ran into while working on the project include: 
● In order for the results from the prism to look good, we had to disable diffuse reflections 

from refracted photons. Otherwise the inside of the prism would appear far too bright. 
This means that several of our results are not exactly physically accurate. 

 
6. Future Work 
There are multiple ways that we could continue to work on this project. One of our original 
desires was to create a “light playground” where we would be able to interact with the lights and 
objects in real-time. The major challenge behind this is that it would require huge amounts of 
optimization in terms of the code. Currently, it takes a few seconds to develop even a single 
simple image, and if we want to be able to create these effects in real time with a reasonable 
amount of loading time, we would need to further optimize our algorithms and structures, and 
most likely offload some of the work to the GPU. 
 
Another idea for possible improvement is when the photons are initially created, have them be 
“white”, but then if they are refracted, have them split off probabilistically into various 
wavelengths. This way, diffuse surfaces will have less color noise, but we can still get the 
diffractive effects we are looking for. 
 
We would also like to add interference as one of the effects our ray tracer is able to simulate. Our 
original goals were refractive effects, caustics, dispersion, and interference; the refractive effects 
are complete, the caustics came out relatively well, and the dispersion goes hand-in-hand with 
the refraction and has been simulated relatively accurately. Since the current state of the project 
is already dealing with photons in terms of wavelengths, interference would be a great effect to 
pursue.  



7. Resources 
 
RGB to HSV conversion: 
http://coecsl.ece.illinois.edu/ge423/spring05/group8/finalproject/hsv_writeup.pdf 
 
Hue to wavelength conversion foundation: 
https://stackoverflow.com/questions/11850105/hue-to-wavelength-mapping 
 
Wavelength to RGB conversion: 
http://www.fourmilab.ch/documents/specrend/ 
 
Sampling a random variable according to a Planck / Wien Distribution: 
https://www.osti.gov/servlets/purl/420378  

http://coecsl.ece.illinois.edu/ge423/spring05/group8/finalproject/hsv_writeup.pdf
https://stackoverflow.com/questions/11850105/hue-to-wavelength-mapping
http://www.fourmilab.ch/documents/specrend/
https://www.osti.gov/servlets/purl/420378

