
Early Film Simulation

Maria Jose Cepeda Garcia

April 30, 2018

Abstract

In this paper, I explore how to apply procedural textures for simula-
tion of graininess and scratches on a scene. Furthermore, I implement a
photographic tone operator. The objective of this project is to provide
the silent movie appearance to a synthetic image.

1 Introduction

In this project, I explore the photographic development process for the simula-
tion of black and white photographic prints [2]. Since this process fits in the tone
reproduction stage, I incorporate the algorithms described here to my ray tracer
that I have been working on throughout the course. My goal is to recreate the
same image used for our ray tracer checkpoints as a black and white image with
the appearance of a silent movie. The old movie appearance process consists of
two phases; 1) the exposure phase, where I add the grain and the scratches to
the scene, and 2) the tone reproduction phase, where I apply a photographic
tone operator to map simulated scene luminance to display luminance.

2 Implementation

The implementation of this project is written in Java 8.

2.1 Exposure

In the exposure phase, I add the grain and the scratches to our scene. The
generation of noise that follows a Gaussian distribution is often used to accurate
model film grain [2]. For this project, I create a Gaussian noise generator that
adds independent noise values to each pixel in the scene. To control the amount
of grain in our scene, the noise generator receives as a parameter the variance
for the Gaussian distribution. The mean value is set to zero by default. Setting
the variance value close to one results in images with lots of grain (Figure 1a).
If we want a more subtle grain, we need to specify a variance close to zero
(Figure 1b). Figure 2 depicts a scene from The Incredibles animation movie
where grain is also added to get the silent movie appearance.

In a first attempt to simulate scratches on the scene, I implemented the
generation of a random number of straight lines with random positions and I
added them to my ray tracer scene. Unfortunately, the result was not very
convincing. Film scratches usually appear like vertical lines across the entire

1



(a) Gaussian noise, variance = 1 (b) Gaussian noise, variance = 0.08

Figure 1: Example of Gaussian noise with different variance values

Figure 2: The Incredibles movie, example of grain and scratches simulation

scene (e.g. Figure 2 shows a scratch in the middle of the scene), but they are not
really sharp straight lines. Some of them are curved, others have some slope. To
draw lines with those characteristics, I implement Perlin noise [3]. The idea is
to generate lines with a fixed x coordinate position and a random y coordinate
for each point of the line. The y coordinate is the result of adding Perlin noise
to a given y coordinate.

My implementation of Perlin noise for one dimension consists of two meth-
ods; 1) the pseudo-random number generator (PRNG), and 2) the interpolation
method. The PRNG generates random numbers using a seed. That seed guar-
antees that for a giving number, we will obtain the same random number. In
Java, it is possible to set the seed value to the method Math.random(). The
interpolation method will create a new y coordinate between two given values.
To get smooth curved lines, I implement the cosine interpolation.

Algorithm 1 interpolation (float a, float b, float blend)

. Input: (a) lower bound, (b) upper bound, (c) Value between 0 and 1

. Output: Value between a and b

1: double theta = blend * Math.PI;
2: float f = (float) (1f - Math.cos(theta)) * 0.5f;
3: return a * (1f - f) + b * f;

2



There are two parameters that characterize the shape of a line; 1) the am-
plitude, is the distance from the right to the left of the wave (vertical lines),
and 2) the wavelength, the distance between the peak of two consecutive waves.
If we want a line with short twisted curves, amplitude and wavelength values
must be small. In our case, since film scratches look almost straight lines, we
draw lines with large values for both parameters. Figure 3 shows an example of
a scratch generated using my implementation of Perlin noise. In this case, the
x coordinate is 400, the length of the line is equal to the height of the canvas,
the amplitude is 50, and the wavelength is 600.

Figure 3: Scratches simulation using Perlin Noise 1D

2.2 Tone reproduction

For tone reproduction, I use Reinhard’s global mapping operator [4]. This op-
erator applies photographic techniques to map simulated scene luminance to
display luminance. Since we are following a photographic development process
to simulate old movie appearance, this is an appropriate tone operator to im-
plement. There are three terms to consider in Reinhard’s tone operator; 1) the
middle-grey color, that represents the middle brightness region of a scene, 2)
the key value, that indicates if the simulated scene is bright, normal, or dark,
and 3) the illuminance range, the difference between the highest and lowest
scene luminance. In general, the middle-grey color is mapped to the Zone V in
the Zone System. In a simplified implementation of this tone operator, Zone V
value is usually set to 18% of grey and the key value is the log average scene
luminance. In order to get a more photographic appearance, I implement this
global mapping operator so you can specify the key value and the middle-grey
color. Furthermore, you can specify the maximum luminance value in the scene
(Lmax). Specifying different values for these three terms, we can achieve dif-
ferent effects. Figure 4 shows the same scene choosing different values for these
terms. As you can see, using higher values for Zone V and Lmax, the scene
becomes brighter. Choosing different middle-grey colors, the color appearance
of the entire scene change.

For this version, Reinhard’s dodging-and-burning printing technique is not
implemented.

3



(a) Zone V = 9% of grey, middle-grey
= Blue, Lmax= 100 nits

(b) Zone V = 18% of grey, middle-grey
= Blue, Lmax= 100 nits

(c) Zone V = 18% of grey , middle-
grey = Blue, Lmax= 1000 nits

(d) Zone V = 18% of grey , middle-
grey = Red, Lmax= 100 nits

Figure 4: Example of my raytracer image using Reinhard’s tone operator with dif-
ferent values for Zone V, middle-grey color, and Lmax parameters.

3 Results

In this section, I present some images generated for my solution (Figure 5). In
all images, Reinhard’s Zone V is 18% of gray and Lmax is 100 nits. Furthermore,
the number of scratches is eight in all images. Although the scratches have the
same x coordinate position in all the images, they look different. That is due to
the random Perlin noise added to the y coordinate.

4 Conclusions & Future work

I explore the process of simulating silent movies following a photographic ap-
proach. Although my implementation is a simplified version of what it is really
done, it is able to simulate old movies adequately. However, further work must
be done to generate more realistic scratches. Using a procedural texture to
define the scratch shape is not enough. It also necessary to consider the light
reflection at every point of the scratch as well as the scratch geometry [1].

References

[1] C. Bosch, X. Pueyo, S. Mérillou, and D. Ghazanfarpour. A physically-
based model for rendering realistic scratches. Computer Graphics Forum,
23(3):361–370.

[2] J. Geigel and F. K. Musgrave. A model for simulating the photographic
development process on digital images. In Proceedings of the 24th Annual

4



(a) Reinhard’s middle-grey = Blue,
Gaussina noise variance = 0.008

(b) Reinhard’s middle-grey = Red,
Gaussina noise variance = 0.008

(c) Reinhard’s middle-grey = Blue,
Gaussian noise variance = 0.5

(d) Reinhard’s middle-grey = Blue,
Gaussian noise variance = 0.8

Figure 5: Example of images generated using my solution

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’97, pages 135–142, New York, NY, USA, 1997. ACM Press/Addison-Wesley
Publishing Co.

[3] K. Perlin. An image synthesizer. In Proceedings of the 12th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH ’85,
pages 287–296, New York, NY, USA, 1985. ACM.

[4] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda. Photographic tone re-
production for digital images. In Proceedings of the 29th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’02, pages
267–276, New York, NY, USA, 2002. ACM.

5


