
1

mjb – August 2, 2012

Oregon State University
Computer Graphics

Teaching OpenGL in a Post-Deprecation World

Mike Bailey
mjb@cs.oregonstate.edu

Oregon State University

Our motto: “We figure out the spec so you don’t have to.” ☺

http://cs.oregonstate.edu/ ~mjb/sig12

mjb – August 2, 2012

Oregon State University
Computer Graphics

http://xkcd.com

Life in the World of OpenGL –
Always Adding More Buttons to Push ! :-)

mjb – August 2, 2012

Oregon State University
Computer Graphics

OpenGL Release GLSL Release When

1.0 --- 1993

1.1 --- 1997

1.2 --- 1998

1.3 --- 2001

1.4 --- 2002

1.5 --- 2003

2.0 1.10 2004

2.1 1.20 2006

3.0 1.30 July 2008

3.1, 3.2, 3.3 3.30 July 2009

4.0 4.00 March 2010

4.1 4.10 July 2010

4.2 4.20 August 2011

4.3 4.30 August 2012

OpenGL / GLSL Release History

mjb – August 2, 2012

Oregon State University
Computer Graphics

OpenGL 3.x deprecated some features that
we, as educators, care about

“Deprecate” doesn’t mean it has gone away now, but means that it will
go away “at some time”, which is undefined so far. There is some
evidence that “at some time” could mean “never”. Or not.

Deprecated features include:

• The Fixed-Function pipeline (will need to use shaders for everything)

• glBegin / glEnd (use vertex buffer objects)

• Quads (use triangles)

• Polygons (use triangles)

• Built-in variables in GLSL (pass in everything yourself)

These are the 3 items that I think
are most troubling from a teaching
perspective

You could, of course, continue to use the old
features by using OpenGL’s compatibility mode,
but if those features ever really do go away, you
will be stuck with a bunch of code you need to
modify. What is the right compromise here?

mjb – August 2, 2012

Oregon State University
Computer Graphics

GLSL Deprecation – Transitioning from Built-in Varia bles

Variables like gl_Vertex and gl_ModelViewMatrix have been built-in to the GLSL language.

However, starting with Desktop OpenGL 3.0, they have been deprecated in favor of you
defining your own variables and passing them in from the application yourself. The built-ins
still work, but be prepared for them to maybe go away some day. Also, OpenGL-ES has
already completely eliminated the built-ins.

What to do?

I now pretend that we have created variables in an application and have passed them in. So,
lines of code would be changed to look like:

vec4 ModelCoords = gl_Vertex ;

vec4 EyeCoords = gl_ModelViewMatrix * gl_Vertex ;

vec4 ClipCoords = gl_ModelViewProjectionMatrix * gl_V ertex ;

vec3 TransfNorm = gl_NormalMatrix * gl_Normal ;

vec4 ModelCoords = aVertex ;

vec3 TransfNorm = uNormalMatrix * aNormal ;

vec4 EyeCoords = uModelViewMatrix * aVertex ;

vec4 ClipCoords = uModelViewProjectionMatrix * aVerte x ;

vec4 ModelCoords = gl_Vertex ;

vec4 EyeCoords = gl_ModelViewMatrix * gl_Vertex ;

vec4 ClipCoords = gl_ModelViewProjectionMatrix * gl_V ertex ;

vec3 TransfNorm = gl_NormalMatrix * gl_Normal ; Why do some of the variables
begin with ‘a’?
Why do some begin with ‘u’?

mjb – August 2, 2012

Oregon State University
Computer Graphics

My Own Variable Naming Convention

Beginning
letter(s) Means that the variable …

a Is a per-vertex attribute from the application

u Is a uniform variable from the application

v Came from the vertex shader

tc Came from the tessellation control shader

te Came from the tessellation evaluation shader

g Came from the geometry shader

f Came from the fragment shader

This isn’t part of “official” OpenGL – it is my way of handling the confusion

With 7 different places GLSL variables can be written from, I decided to adopt a
naming convention to help recognize what variables came from what sources:

2

mjb – August 2, 2012

Oregon State University
Computer Graphics

// uniform variables:

#define uModelViewMatrix gl_ModelViewMatrix
#define uProjectionMatrix gl_ProjectionMatrix
#define uModelViewProjectionMatrix gl_ModelViewProjectionMatrix
#define uNormalMatrix gl_NormalMatrix
#define uModelViewMatrixInverse gl_ModelViewMatrixInverse

// attribute variables:

#define aColor gl_Color
#define aNormal gl_Normal
#define aVertex gl_Vertex
#define aTexCoord0 gl_MultiTexCoord0
#define aTexCoord1 gl_MultiTexCoord1
#define aTexCoord2 gl_MultiTexCoord2
#define aTexCoord3 gl_MultiTexCoord3
#define aTexCoord4 gl_MultiTexCoord4
#define aTexCoord5 gl_MultiTexCoord5
#define aTexCoord6 gl_MultiTexCoord6
#define aTexCoord7 gl_MultiTexCoord7

Handling the Transition Now

This isn’t part of “official” OpenGL – it is my way of handling the transition

This is how I equivalence the new names to the deprecated (but still working) ones:

File gstap.h

mjb – August 2, 2012

Oregon State University
Computer Graphics

GLSL Deprecation – Transitioning from glBegin-glEnd

glBegin-glEnd was my favorite OpenGL feature when it came time to teach it. It is
so easy to understand and learn that students could go from no-knowledge-at-all to
working-3D-program-to-smugly-show-their-friends in the first week.

Now everything is supposed to be done using vertex buffer objects, which is much
harder to pick up and write a program around.

I have been trying the approach of using a C++ class that looks like glBegin-glEnd,
but underneath really uses a vertex buffer object. The students can start here, and
then eventually see how it should be formatted in the new way.

mjb – August 2, 2012

Oregon State University
Computer Graphics

Using the Vertex Buffer Object Class

Blob.glBegin(GL_TRIANGLES); // can be any of the OpenGL topologies
Blob.glColor3f(r0, g0, b0);
Blob.glVertex3v(x0, y0, z0);
. . .

Blob.glEnd();

VertexBufferObject Blob();
Blob.CollapseCommonVertices(true);

Blob.Draw();

Setting Up:

Filling:

Drawing:

mjb – August 2, 2012

Oregon State University
Computer Graphics

Vertex Buffer Object Class Methods

void CollapseCommonVertices(bool);

void Draw();

void glBegin(topology);

void glColor3f(r, g, b);
void glColor3fv(rgb[3]);

void glEnd();

void glNormal3f(nx, ny, nz);
void glNormal3fv(nxyz[3]);

true means to not replicate common vertices in the internal
vertex table. This is good if all uses of a particular vertex
will have the same normal, color, and texture coordinates,
like this – instead of like this.

Draw the primitive. If this is the first time Draw() is being
called, it will setup all the proper buffer objects, etc. If it as
a subsequent call, then it will just initiate the drawing.

Initiate the primitive.

Specify a vertex’s color.

Specify a vertex’s normal.

Terminate the definition of this primitive.

mjb – August 2, 2012

Oregon State University
Computer Graphics

Vertex Buffer Object Class Methods

void glTexCoord2f(s, t);
void glTexCoord2fv(st[2]);

void glVertex3f(x, y, z);
void glVertex3fv(xyz[3]);

void Print(FILE *);

void RestartPrimitive();

void UseBufferObjects(bool);

false means to use vertex arrays instead of vertex buffer objects.
The big advantage of buffer objects is that the data all lives on the
graphics card so that it only ever needs to be transferred once.
Vertex Array data is kept in host memory and so needs to be
transferred each time it is drawn. The default is to use VBOs if
they are supported on your graphics system, and vertex arrays if
they are not.

Specify a vertex’s texture coordinates.

Specify a vertex’s coordinates.

Prints the vertex, normal, color, texture coordinate, and connection
element information to a file. If the file pointer is not given,
standard error (i.e., the console) is used.

Causes the primitive to be restarted. This is useful when doing
triangle or quad strips and you want to start another one without
getting out of the current one. By doing it this way, all of the strips’
vertices will end up in the same table, and you only need to have
one VertexBufferObject class going.

mjb – August 2, 2012

Oregon State University
Computer Graphics

GLSL Deprecation – Transitioning from a Fixed Functi on Pipeline

Getting a GLSL shader ready to go requires several steps, none of which has to do with
understanding computer graphics.

Once again, a C++ class seems to be able to help smooth the transition.

3

mjb – August 2, 2012

Oregon State University
Computer Graphics

Loading, Compiling, and Linking GLSL Shaders

int Polar;
float K;

GLSLProgram Hyper();

Hyper.SetVerbose(true);

bool valid = Hyper.Create("hyper.vert", "hyper.frag");

if(! valid) { print something; do something; }

The constructor creates the GLSLProgram object, but doesn’t put anything in it.

The Create() method loads, compiles, and links all the shaders into one shader program.
The Create() method prints error messages if something failed.
Your program can test for success by seeing if the Create() return is true.

You can list as many individual shader file types in the Create() method as you are using,
up to the maximum number of shader types that OpenGL currently supports), in any order .

mjb – August 2, 2012

Oregon State University
Computer Graphics

Recognizing the Different Types of Shader File

The GLSLProgram Create() method recognizes shader types by their filename extensions.
Recognized extensions are:

Type of Shader Filename Extension

Vertex .vert

Vertex .vs

Tessellation Control .tcs

Tessellation Evaluation .tes

Geometry .geom

Geometry .gs

Fragment .frag

Fragment .fs

mjb – August 2, 2012

Oregon State University
Computer Graphics

The Order that Shaders are used has nothing to do w ith the Order
in which they are Passed to the GLSLProgram Create() method

Shader files can be passed into the GLSLProgram Create() method in any order.
They will still operate on your graphics per the OpenGL standard order shown here:

mjb – August 2, 2012

Oregon State University
Computer Graphics

Hyper.Use();

Hyper.UseFixedFunction();

Revert to the fixed-function pipeline with:

Making this Shader Program Active and Inactive

Make this the active shader program with:

mjb – August 2, 2012

Oregon State University
Computer Graphics

GLfloat Polar, K;
. . .

Hyper.SetUniformVariable("Polar", Polar);
Hyper.SetUniformVariable("K", K);

. . .
Hyper.Use();
glBegin(GL_TRIANGLES);

Hyper.SetAttributeVariable("Temperature", T0);
glVertex3f(x0, y0, z0);

Hyper.SetAttributeVariable("Temperature", T1);
glVertex3f(x1, y1, z1);

Hyper.SetAttributeVariable("Temperature", T2);
glVertex3f(x2, y2, z2);

glEnd();

Passing in Uniform and Attribute Variables

mjb – August 2, 2012

Oregon State University
Computer Graphics

And …

The GLSLProgram class will also handle the major new feature that is
being announced in the OpenGL 4.3 press conference on Monday.

But, if I say anything about that now, they will kill me.

Khronos Group members:

4

mjb – August 2, 2012

Oregon State University
Computer Graphics

Teaching OpenGL in a Post-Deprecation World

Mike Bailey
mjb@cs.oregonstate.edu

Oregon State University

Our motto: “We figure out the spec so you don’t have to.” ☺

http://cs.oregonstate.edu/ ~mjb/sig12

This page will be modified Monday evening…

