bring your brain

Education Committee

www.siggraph.org/education
Contents

2 Director’s Statement
4 CGEMS: Computer Graphics Educational Materials Source
6 – 9 Curriculum Knowledge Base Report
9 Curriculum for Visualization Report
10 Academic Information Index (AII) Report

SPACE–TIME Student Competitions
11 – 13 Posters
14 – 15 Animation
16 – 17 Interactive
18 – 19 Call for Submissions – SIGGRAPH 2006

Credits
Cover: Front cover includes images from the student competitions.

Catalog design and editing
Nancy Ciolek (designLink), Rochester Institute of Technology
Colleen Case, Schoolcraft College, ACM SIGGRAPH Director for Education
Catherine Begle, Schoolcraft College

Content
Tony Alley, Oklahoma Christian University
Gitta Domik, Universitat Paderborn
William Joel, Western Connecticut State University
Joachim Jorge, INESC-ID Lisbon, Portugal
Michael Mehall, Schoolcraft College
Jacob Pollak, Detroit Creative Group
Stephen Wroble, Schoolcraft College
The SIGGRAPH Education Committee sponsors many different projects and activities that involve volunteers from around the world. 2005 brought in the 21st year of the committee. This catalog documents committee projects divided into three general focus areas: Curriculum Knowledge Base led by Tony Alley (Oklahoma Christian University), Community Building led by Professor Joaquim Jorge (INESC-ID Lisboa, Portugal) and Conference Activities led by Michael Mehall (Schoolcraft College). These focus areas facilitate our work groups based on the goals and objectives of the Education Committee.

Goals

- To encourage and facilitate efforts that connect communities; collaborative connections that better our educational process and trigger innovation and creativity.
- To support projects and experiences that further the development of the field; to evaluate existing projects and new projects to ensure they meet the needs of the educator and learner.
- To provide global online resources; to achieve and develop resources for educators; to encourage the definition of a knowledge base for the computer graphics discipline and to identify curriculum and core competencies, innovative processes and learning pedagogy.
- To look at all the learners in the field; to discover how best to design instruction and instructional interfaces using cognitive science and human learning theory and to light the path for future educators so they can continue in the development of the field.

Our activities are based on the work of volunteers. We initiated a 3-year rotation for positions and this year we welcome many new faces to the committee.

We welcome Tony Alley (Oklahoma Christian University), Marla Schweppe (Rochester Institute of Technology), Barb Helfer (Capital University), Jacob Pollak (Detroit Creative Group), James Martinez (Wye River Upper School, WRUS, in Maryland), Frank Hanish (Tuebingen) and Marc Barr (Middle Tennessee State University), ACM SIGGRAPH 2006 Educators Program Chair to the Education Committee.

In 2006, we will need volunteers to fill positions for 2007 activities. The positions are: Interactive Competitions Chair; Poster Competitions chair; and a Conference Activities lead. We also encourage you to initiate new projects and donate your time, energy and ideas. Feel free to contact any committee member for information.

Colleen Case
ACM SIGGRAPH
Director for Education

Below is a partial list of the Education Committee’s projects. Many are documented in this catalog:

Curriculum Workshops Report
The results of the Curriculum workshops led by Cary Laxer (Rose-Hulman Institute of Technology), Gary Bertoline (Purdue University), Frank Brattain (Purdue University) and Tony Alley (Oklahoma Christian University).

Computer Generated Visualization
Updated online resources project led by Gitta Domik (Universität Paderborn).

South American Activities
Led by Rejane Spitz (S2005 International Resources Chair).

Continued Development and Implementation of CGEMS-The Computer Graphics Educational Materials Source
An emerging online refereed repository for curriculum materials Dena Eber (Bowling Green State University) and Professor Joaquim Jorge (INESC-ID Lisbon, Portugal).

Academic Information Index (Education Directory)
Update and repopulating led by William Joel (Western Connecticut State University).

The Education Booth
Organized by Guanping Zheng (Middle Tennessee State University), it is our key contact point at the conference. We also participate in the Educators Program Ramp-In session (Patricia Bedmann, 2005 Educators Program Chair), where our student competition winners’ work will be presented.

The SPACE–TIME Student Competition Winners
Winners are documented in this catalog (Nancy Ciolek, Rochester Institute of Technology), on display at our booth and will go on tour throughout the year (Marla Schweppe, Rochester Institute of Technology). The competitions are coordinated by Michael Mehall, Stephen Wruble (Schoolcraft College) and Jake Pollak (Detroit Creative Group).

Other Program Activities
Educators Grant Program – Mike McGrath (Colorado School of Mines) and student calls for participation are included in this catalog.
Since it was presented at SIGGRAPH 2003 in San Diego, CGEMS has evolved into a full-fledged peer reviewed medium. This paper presents the current state of the server, reports on work developed and dissemination activities, but most importantly describes how and why educators should submit content.

What is CGEMS

CGEMS addresses the needs of teachers and practitioners of a mature, yet still rapidly changing field. As Computer Graphics, Digital Arts and Media continue to evolve and reinvent themselves, educators need to master new content and computer techniques for image synthesis. To this end teachers in all Computer Graphics and Digital Media disciplines need to develop or use readily available high-quality curricular resources. While this has traditionally been the role of textbooks, simply teaching hardware and software influence and transform the way these are used. Because of this, many disciplines that incorporate Computer Graphics into their curricula should focus on creative and technical concepts, over other things, that curricula should focus on. Computer science educators also see a changing role in their curricula. Indeed, rapid change in hardware and software influence and transform the way these are used. Because of this, and for pedagogical reasons, Computer Graphics educators need to stay current with new trends and incorporate them in their curricula. Three years later, attendees at the CGE’02 workshop held in Bristol (Bristol ’02) recognized this need. The CGEMS concept and the work described herein was largely borne out of these discussions.

Many debates took place during and after CGE’02 to shape the structure and policies of a curricular materials service. To serve the community of CG educators worldwide, we wanted to ensure that (a) timely submission, (b) regular updates, (c) rigorous quality control, and (d) peer recognition. This led to establishing a journal-like system with several review cycles without a fixed deadline. This enables flexible review workflow and encourages timely updates of content. However, we also identified the need for regular calls for submissions, possibly at the end of each academic semester in fall and spring. In this way, we hope to get notes, assignments, and examples from successful courses, in their polished state. The next section provides an overview of the server.

Overview

CGEMS is an online server to provide curricular material for Computer Graphics educators. The system includes a method for reviewers to volunteer, contributors to submit and editors to jury and control the quality of content to ensure sound quality contributions. The server is available at http://cgems.inesc.pt.

CGEMS is an emerging online refereed repository for curricular materials related to Computer Graphics. It encompasses as many disciplines that incorporate Computer Graphics as possible, including computer science, math, physics, graphics arts, and “fine” art to name a few. The Eurographics Education Board and the SIGGRAPH Education Committee have sanctioned the CGEMS project.

After considerable discussion, we decided to adopt the journal model for CGEMS, including possible special issues. Indeed, while there are a few “natural deadlines” affecting educators in the field (end of academic year, semesters, professional conferences such as Eurographics and SIGGRAPH, etc.), forcing the conference model on submissions could result in lesser opportunities for interaction between authors and reviewers with a negative impact on the quality of final submissions.

The current CGEMS architecture is based on a client-server communication. The endusers, authors, reviewers and the editor-in-chief (EIC), access the system through Web pages that in turn interact with a console application responsible for receiving the web applications requests, including file access, database access and sending e-mail. The system users, the submitted modules, module assignment, the reviews, and other important data are all stored in a relational database that is accessed by the console application when needed.

Among its main features the current server version supports online management of reviewing and publishing workflow. This includes awareness management for all aspects and events that arise out of a regular journal operation. Our system also provides automatic e-mail notifications to CGEMS mailing-list subscribers whenever new modules are published. One key feature introduced over the past semester was the possibility for editors-in-chief (EIC) to invite reviewers.

The system has been tested for portability with a large number of different browsers, spanning more than 80% of current Internet users’ configurations. The most relevant core services of the CGEMS proposal arising out of the CGE’02 workshop are already implemented and in good working order since July 2003. We are looking to extend the core systems functionality through enlisting the cooperation of additional members of the Computer Graphics education community at large.

Why submit?

We encourage members of the Computer Graphics community to submit course innovations for consideration in CGEMS. To maximize returns for the community as a whole, our materials are made available through the server for classroom use, provided the source is acknowledged. Any educator may use all submitted work for educational purposes. Fair use does not include applications of the materials for any purpose other than academic teaching. Indeed, educators who download materials from the server may not distribute them outside of class or publish them in any other way. To this end, they will be asked to accept a fair use agreement before accessing such materials. Our intent is having a fair use policy is to encourage community members to submit and reuse materials freely from the server with due credit being assigned. People are not supposed to use the materials in such ways without the explicit written consent of the author.

To serve CG educators worldwide, CGEMS makes it possible for community members to timely submit their materials. Useful-ness of content is also promoted through regular updates and rigorous quality control. Not the least publishing to a refereed server ensures peer recognition, backed by the foremost professional associations in Computer Graphics. Regular calls for submissions and our promotion efforts encourage other community members to participate through the numerous marketing and dissemination activities that the team has been actively carrying out over the past few months. Our current effort is targeted at engaging people in using the server and arousing their interest. By publishing in CGEMS educators can make their materials accessible to a community, which includes hundreds of people, worldwide.
Scientific and visual medicalization, prototypes, game design, film, corporate video, marketing, architecture, and a variety of other professional endeavors are capitalizing on the power of computer graphics to communicate, entertain, inform, and inspire. Consequently, the number of colleges and universities developing new computer graphics courses and programs, or evolving existing courses and programs, is substantial. It is our hope that as the field begins to gain acknowledgment from ACM SIGGRAPH for reliable guidance and information.

To this end, the Curriculum Knowledge Base working group has undertaken a number of projects to support the computer graphics discipline in higher education. Work on two of our major initiatives is summarized here. This joint effort is intended to foster a continuing effort to produce a curriculum that includes a common core of knowledge and skills pertinent to all faculty and students—from art to engineering, science to computer graphics and computer science. Also detailed here, you’ll find updated information on Gitta Domik’s guidelines and resources for teaching visualization. The Curriculum for Visualizing and Understanding includes core concepts, curriculum information, links to courses, and more.

The Curriculum Knowledge Base group members are Tony Alley, Gary Bertoline, Gitta Domik, Lew Hitchner, and Cary Laxer. We hope you find the information we have provided here useful and encourage your feedback.

As a part of the 2001 SIGGRAPH Conference Educators Program, Gary Bertoline hosted an open forum to discuss the idea that computer graphics can be understood as an emerging academic discipline. An open forum was conducted again at the 2002 Conference to address key concepts in a curriculum to support the emerging discipline. Both forums were well attended and participants expressed great interest in having work continue in this area. For each of the last two years, a working group of educators has met to collate the ideas generated during those open forums, with the hope of participating in the 2004. Having drafted a broadly detailed curriculum framework during the past workshops, a group will meet again this year to add detail to the broad framework generated over the last two years. Support also continues for Gitta Domik’s important work on the development of guidelines and curriculum for the area of computer-generated visualizations.

CG Skill Set Core – Required of all students in computer graphics programs

Fundamentals – an overview of the field; foundational concepts; industry highlights; careers; roles and responsibilities; milestones in the chronology of CG; CG as a contributing factor to other fields and disciplines; CG as a discipline in its own right.

• Vocabulary – meaningful terms and concepts; broadly-based theoretical frames and issues that are essential to an understanding of the field

• Hardware – computers; monitors and displays; networks; digital media; platform technologies; architectures

• Software – programs/applications

• Systems – operating systems; structures; formats for data storage

• Representations of Visual Systems – pixels and polygons; 2D and 3D display

Professional and Ethical Issues – ACM code of ethics; IEEE code of ethics; US Information Industry’s Code of Good Practice.

• Cultural – ubiquitous content; social-interaction models

• Intellectual property – defining property rights; licensing

• Copyright – US and international copyright law; fair use; CONFU/Conference on Fair Use, Sept.

• ADA – availability and access to information

• Color blindness – design issues and special needs

Math – an introduction to mathematical concepts sufficient to ensure that the student can manipulate objects in coordinate space, to include rotations, scaling, movement; an understanding of linear dimensions and angles.

• Geometry – plane and solid geometry; points, lines, planes, and space; angles

• Transformations – rotation, movement, and scaling of objects

• Coordinate systems – local coordinate systems vs. world coordinate systems; Cartesian coordinate system (x, y, z)

Design Studies (Theoretical) – design as a purposeful activity; visual communication and calculation; mathematical rules; creating order and eliciting interest; design principles; the interaction of elements on-screen and in print.

• Theory – how we come to understand design as a purposeful activity; what works and why; principles, to include: unity and variety, hierarchy, proportion, scale, balance, symmetry, rhythm, repetition, proximity, etc.; organizational concepts (e.g., Gestalt); perceptual principles

• Color theory – contrast; interaction of colors; value, hue, saturation; complements; color and space; temperature; juxtaposition of colors; area and balance; similar and dissimilar color schemes; color systems (additive vs. subtractive)

• Psychology of color – evocative nature of color; colors and emotion; symbolic and cultural associations

• Texture – surface characteristics; tactile vs. visual; as an aid in visualization and creating order and eliciting interest; design principles; the interaction of elements on-screen and in print.

• Theory – how we come to understand design as a purposeful activity; what works and why; principles, to include: unity and variety, hierarchy, proportion, scale, balance, symmetry, rhythm, repetition, proximity, etc.; organizational concepts (e.g., Gestalt); perceptual principles

• Color theory – contrast; interaction of colors; value, hue, saturation; complements; color and space; temperature; juxtaposition of colors; area and balance; similar and dissimilar color schemes; color systems (additive vs. subtractive)

• Psychology of color – evocative nature of color; colors and emotion; symbolic and cultural associations

• Texture – surface characteristics; tactile vs. visual; as an aid in visualization and creating order and eliciting interest; design principles; the interaction of elements on-screen and in print.

• Theory – how we come to understand design as a purposeful activity; what works and why; principles, to include: unity and variety, hierarchy, proportion, scale, balance, symmetry, rhythm, repetition, proximity, etc.; organizational concepts (e.g., Gestalt); perceptual principles

• Color theory – contrast; interaction of colors; value, hue, saturation; complements; color and space; temperature; juxtaposition of colors; area and balance; similar and dissimilar color schemes; color systems (additive vs. subtractive)

• Psychology of color – evocative nature of color; colors and emotion; symbolic and cultural associations

• Texture – surface characteristics; tactile vs. visual; as an aid in visualization and creating order and eliciting interest; design principles; the interaction of elements on-screen and in print.

• Theory – how we come to understand design as a purposeful activity; what works and why; principles, to include: unity and variety, hierarchy, proportion, scale, balance, symmetry, rhythm, repetition, proximity, etc.; organizational concepts (e.g., Gestalt); perceptual principles

• Color theory – contrast; interaction of colors; value, hue, saturation; complements; color and space; temperature; juxtaposition of colors; area and balance; similar and dissimilar color schemes; color systems (additive vs. subtractive)

• Psychology of color – evocative nature of color; colors and emotion; symbolic and cultural associations

• Texture – surface characteristics; tactile vs. visual; as an aid in visualization and creating order and eliciting interest; design principles; the interaction of elements on-screen and in print.

• Theory – how we come to understand design as a purposeful activity; what works and why; principles, to include: unity and variety, hierarchy, proportion, scale, balance, symmetry, rhythm, repetition, proximity, etc.; organizational concepts (e.g., Gestalt); perceptual principles

• Color theory – contrast; interaction of colors; value, hue, saturation; complements; color and space; temperature; juxtaposition of colors; area and balance; similar and dissimilar color schemes; color systems (additive vs. subtractive)

• Psychology of color – evocative nature of color; colors and emotion; symbolic and cultural associations

• Texture – surface characteristics; tactile vs. visual; as an aid in visualization and creating order and eliciting interest; design principles; the interaction of elements on-screen and in print.

• Theory – how we come to understand design as a purposeful activity; what works and why; principles, to include: unity and variety, hierarchy, proportion, scale, balance, symmetry, rhythm, repetition, proximity, etc.; organizational concepts (e.g., Gestalt); perceptual principles

• Color theory – contrast; interaction of colors; value, hue, saturation; complements; color and space; temperature; juxtaposition of colors; area and balance; similar and dissimilar color schemes; color systems (additive vs. subtractive)

• Psychology of color – evocative nature of color; colors and emotion; symbolic and cultural associations

• Texture – surface characteristics; tactile vs. visual; as an aid in visualization and creating order and eliciting interest; design principles; the interaction of elements on-screen and in print.

• Theory – how we come to understand design as a purposeful activity; what works and why; principles, to include: unity and variety, hierarchy, proportion, scale, balance, symmetry, rhythm, repetition, proximity, etc.; organizational concepts (e.g., Gestalt); perceptual principles

• Color theory – contrast; interaction of colors; value, hue, saturation; complements; color and space; temperature; juxtaposition of colors; area and balance; similar and dissimilar color schemes; color systems (additive vs. subtractive)

• Psychology of color – evocative nature of color; colors and emotion; symbolic and cultural associations

• Texture – surface characteristics; tactile vs. visual; as an aid in visualization and creating order and eliciting interest; design principles; the interaction of elements on-screen and in print.

• Theory – how we come to understand design as a purposeful activity; what works and why; principles, to include: unity and variety, hierarchy, proportion, scale, balance, symmetry, rhythm, repetition, proximity, etc.; organizational concepts (e.g., Gestalt); perceptual principles

• Color theory – contrast; interaction of colors; value, hue, saturation; complements; color and space; temperature; juxtaposition of colors; area and balance; similar and dissimilar color schemes; color systems (additive vs. subtractive)

• Psychology of color – evocative nature of color; colors and emotion; symbolic and cultural associations

• Texture – surface characteristics; tactile vs. visual; as an aid in visualization and creating order and eliciting interest; design principles; the interaction of elements on-screen and in print.

• Theory – how we come to understand design as a purposeful activity; what works and why; principles, to include: unity and variety, hierarchy, proportion, scale, balance, symmetry, rhythm, repetition, proximity, etc.; organizational concepts (e.g., Gestalt); perceptual principles

• Color theory – contrast; interaction of colors; value, hue, saturation; complements; color and space; temperature; juxtaposition of colors; area and balance; similar and dissimilar color schemes; color systems (additive vs. subtractive)

• Psychology of color – evocative nature of color; colors and emotion; symbolic and cultural associations

• Texture – surface characteristics; tactile vs. visual; as an aid in visualization and creating order and eliciting interest; design principles; the interaction of elements on-screen and in print.
Artistic Track: Required of students in computer graphics with a clearly aesthetic orientation.

- Animation – anticipation, action, and follow-through; rigid body vs. procedural animation; ease-in and ease-out; inverse kinematics vs. forward kinematics; morphing; animation along a path; particle systems
- Mechanics of lighting and shading
- Time and motion – in-betweening (tweening)
- Navigation
- Rigging – effectors (endpoints in IK)
- Skeleton – bones, joints
- Rendering

Writing – storytelling; narrative support of CG experiences.
- Script writing – concept development; format for scripts
- Storyboarding – conveying action through stills, roughs, animatics, and storyboards
- Creative writing – storytelling; writing for digital visual media; narrative positions; genre; point of view; writing dialog; establishing plot, conflict, action, and resolution (ticking); script format
- Character development – design as it communicates character attributes; acting for animators

Applied Design
- Game aesthetics – designing puzzles and solutions; visual appeal; the human-computer interface; interactions; challenge, reward, penalties, levels of difficulty; game genres; pre-production work in gaming
- Film aesthetics – staging; genres; film as a social, cultural, political, and critical force
- Animation aesthetics
- Audio
- Video and video editing

Art History – cultural trends and tastes; timelines; genres, schools of thought, and movements; the influence of art on politics, societies, cultures, economics, and vice versa.
- Design – design as a purposeful activity; history of visual expression
- Photography – as a new art form in the early 1800’s; its influence as a tool for visual communications; Muybridge and photography’s influence on an understanding of motion
- Computer graphics & animation – early electronic imaging; photography’s influence on an understanding of motion
- Survey of art – art, design, and visual/graphic communications; mechanics of using APIs; a theoretical introduction illuminated by use of the API.

Technical Track – Required of those students with a specialization in the technical areas of CG

Image Synthesis - Algorithms for generation of primitives, material properties/interaction with light, reflection and shading models, texture mapping, sampling and anti-aliasing techniques, ray tracing, hidden surface removal techniques.

Animation – natural behaviors (waves, smoke, fire).

- Optimization
- Gaming

HCl – motivation; accommodating human diversity; design principles and trade-offs; usability testing; prototyping techniques and tools; virtual reality interfaces; user interface management systems; tools for user interface construction and graphical programming environments.

Computer Generated Visualization

Modeling – curves; non-uniform rational B-splines (NURBS); polygonal modeling; level of detail; motion capture and object tracking; subdivision surfaces and meshes.

Artificial Intelligence – computer vision: image acquisition issues, algorithms for image segmentation (e.g., edge detection), image understanding of 2D and 3D scenes; survey of applications (e.g., autonomous vehicles, automated change detection, medical image interpretation).

Color
- Graphic communication
- Visualization (psychology of color)
- Physics of light - refraction; dispersion; fluorescence

Matrix and Vector Algebra – mathematics for CG.
- Matrix and Vector Algebra
- Complex Numbers/Quaternions
- 2D and 3D Coordinate Systems (Cartesian, Polar, Spherical)
- Parametric/Non-Parametric Representations
- Numerical Methods

Publication design – designing for print; book, magazine, and newspaper layout
- Layout – designing for emphasis, attention, flow; using structure to facilitate communication

3D Modeling – polygonal modeling, deformations; parametric primitives; NURBS; lathed, lofted, extruded, and skinned objects; modeling economy.
- Geometry – geometry created with primitives, splines, meshes, and NURBS systems; economic modeling, normals
- Character design – designing for animation; form as it communicates character attributes
- Shaders – procedural shaders; materials
- Rendering – cameras; resolution; file types; safe areas

Algorithms
- Graphics hardware – properties of output devices (CRT’s, flat panel technologies); input devices; special purpose chip sets/graphics cards; pipeline architecture; programmable architectures; comparison of graphics card features.

Shader Languages – Renderman

Graphics API – GL/OpenGL, NVidia Cg, ATI HLSL (DirectX 9) theoretical foundations and algorithmic issues; mechanics of using APIs; a theoretical introduction illuminated by use of the API.
- Algorithms for graphics primitives (lines, polygons, fill algorithms, line antialiasing techniques)
- Geometric Transformations 2D and 3D
- Viewing and Clipping Algorithms
- Hidden Surface Removal Algorithms
- Lighting Models/Texture Mapping
- Color Models
- Object/Scene Mapping

Update on the Curriculum for Visualization

The "Education for Visualization Committee" or EVC for short, has the goal "to further development of guidelines and teaching materials for visualization curricula and courses". Since the mid-90’s, the Website www.uni-paderborn.de/cs/vis/ (also linked from the Education Website www.siggraph.org/education) exists to provide appropriate information material.

Now, in 2005, the committee has carried out a new survey of courses teaching "Visualization". The results are course units sorted by their titles and content. Each course is categorized to fit one of the following categories:
- Computer generated/Visualization (including Scientific Visualization, Data Visualization, Information Visualization)
- Courses with Virtual Reality aspects
- Courses focusing on the specific application of medical image interpretation.
- Courses that are strongly interdisciplinary/collaborative
- Courses with substantial perception aspects

More than 40 courses were assembled and categorized on the Website "Visualization Courses Worldwide" for educators to browse and contact. One strongly growing direction in teaching visualization is the interdisciplinary/collaborative aspect. These courses are often taught by faculty from different disciplines (e.g. Computer Science and Art, or Science departments) and/or encourage students from different departments to take the same course and work together in projects.

Because links to Websites often disappear quickly, each course is additionally described by title, lecturer, objectives and topics, and other useful information. Some of the courses have been further described in a contribution to the Educators Program, or to another ACM graphics publication, in which case the reference is listed.

Please contact the author if you have something to add or modify on the Websites:
Gitta Domik
domik@uni-paderborn.de
SIGGRAPH academic information index

SIGGRAPH AII Project Leader:
William Joel
Western Connecticut State University
joelw@wcsu.edu

Introduced to the graphics community at SIGGRAPH 2004, the SIGGRAPH Academic Information Index (AII) fulfills and extends the goals of the previous Education Directory. The AII is an online resource that provides information concerning curricula in computer graphics for SIGGRAPH’s three primary audiences: students, educators and professionals.

The AII consists of data for institutions that offer curricula and/or programs in computer graphics and related disciplines. Each institution that wishes to be listed in the index must first create an entry by accessing the index online:
http://cs.wcsu.edu/siggraph

The data entry pages are quite simple to complete, and it should take no more than thirty minutes to create an initial entry. It should also be noted that not all data pertaining to a program need be entered the first time. On the contrary, it is assumed that an institution’s data will evolve over time, becoming more and more complete.

The AII serves students in that it provides a single source for locating schools with offerings of interest to the searcher. Programs can be searched according to type of institution, type of program, or geographical location. In addition, contact information is provided so that students can make further inquiries.

Educators can also benefit from the AII, not only by publicizing their programs, but also in locating institutions of similar type. For example, an educator might wish to pursue a specific line of research, or have a new course they are entertaining, and wish to see what others have done. With just a few keystrokes, an educator can find what they are seeking.

Lastly, professionals can utilize the AII to both further their own educational goals, as well as locate perspective candidates for their organizations. In essence, the Academic Information Index provides a tool whereby members of the graphics community can learn about each other and create new connections.

If anyone wishes to learn more about the Academic Information Index they can either contact William Joel at:
joelw@wcsu.edu

Or stop by the Education Committee’s booth at the annual SIGGRAPH conference.

SPACE-TIME student competition/print

The Poster/Print portion of the SIGGRAPH Student SPACE-TIME Competition for 2005 is a display of excellent design and technical proficiency. This year’s SIGGRAPH Education Committee sponsored competition was based on a theme of “Bring Your Brain”. Submissions reflected a broad range of interpretations of this year’s theme. After premiering at the annual SIGGRAPH Conference in Los Angeles this summer, the show will be made available for viewing around the world. For more information please visit our Website:

College/University Poster Competition

First Place
Laila Scherer
Johnson County Community College
Overland Park, Kansas
Instructor: Stephanie Sabato
College/University Poster Competition

Second Place
Lauren Shreve
Johnson County Community College
Overland Park, Kansas
Instructor: Jill Coppess

Third Place
Daniel Gibson
East Tennessee State University
Johnson City, TN
Instructor: Robert Maxwell

First Place, K-12 Poster Competition
Andrew Klass
Homewood Flossmoor High School
Flossmoor, Illinois
Instructor: John O. Smith

Honorable Mention
Evanita Arifin
University of Wisconsin-Stevens Point
Stevens Point, WI
Instructor: John O. Smith

Lorna Samara Ash
New World School of the Arts
Miami, FL
Instructor: Alisa Pritchirik

Jesse Bray
Johnson County Community College
Overland Park, KS
Instructor: Jill Coppess

Lucas Buck
University of Wisconsin-Stevens Point
Stevens Point, WI
Instructor: John O. Smith

Carrie Cook
Johnson County Community College
Overland Park, KS
Instructor: Jill Coppess

Darin Dahmeier
South Dakota State University
Brookings, SD
Instructor: Michael Steele

Nikole Andrea David
New World School of the Arts
Miami, FL
Instructor: Alisa Pritchirik

Ryan Dohrhorst
University of Wisconsin-Stevens Point
Stevens Point, WI
Instructor: John O. Smith

Jamie Dunn
Johnson County Community College
Overland Park, KS
Instructor: Jill Coppess

Justin Goodreau
Schoolcraft College
Livonia, MI
Instructor: Michael Mahall

Katia Hammond
Johnson County Community College
Overland Park, KS
Instructor: Jill Coppess

Lindis Heitz
University of Wisconsin-Stevens Point
Stevens Point, WI
Instructor: John O. Smith

Daria Hrabov
Bergen County Academies
Hackensack, NJ
Instructor: Miyoung Min

Shiree Ibrahim
Johnson County Community College
Overland Park, KS
Instructor: Jill Coppess

Jessica Kopecky
University of Wisconsin-Stevens Point
Stevens Point, WI
Instructor: John O. Smith

Diana Lee
Bergen County Academies
Hackensack, NJ
Instructor: Miyoung Min

Andy Lail
East Tennessee State University
Johnson City, TN
Instructor: Cher Comett

Jason Martin
Plattmont Community College
Yanceyville, NC
Instructor: Paula Hindman

Justin Thomas
East Tennessee State University
Johnson City, TN
Instructor: Cher Comett

Michael Vargo
University of Northern Colorado
Greeley, CO
Instructor: Maria Sweppe

Peter White
University of Northern Colorado
Greeley, CO
Instructor: Maria Sweppe

Coordinator
Michael Mahall, Associate Professor
Schoolcraft College

Jurors
Catherine Bagle
Schoolcraft College
Scott Dunham
Blue Water
Dana Grzesiak
Schoolcraft College
Prof. Susan Hunt
University of Wisconsin-Stout
Celia McCullough
Macomb Community College
Jacki Melki, USC
Douglas Munro
Graphics Promotions, Inc.
Jacob Polak
The Detroit Creative Group
Marla Schwebke
Rochester Institute of Technology
Over the last year, students from schools around the world in a number of countries around the globe have been working toward getting their submissions prepared for this competition. This year’s SPACE Animation Competition includes a total of 63 entries, from 23 schools, in 5 countries. There is a wide range amongst the submissions. Some are simple, and some complex. Some tend toward photo realism, some are whimsical, and still others are experimental or abstract in nature. Some focus on technique, while some try to tap into the emotions of the audience.

This was a transition year for the animation competition. We are actively working on prototype tools and processes with the intention of streamlining the logistical effort, and with an eye toward expanding the outreach of the competition in the future. This is an active area of work, and includes raising the visibility of all student competitions sponsored by the Education Committee.

In preparation for the jury process, each submission was edited as necessary to remove or obscure any logos or markings which might indicate who did the work, where it was done, or what tools were used. This was intended to put all the submissions on equal footing, so each could be judged entirely on its own merits. These jury edits were then judged to determine which of the submissions should be accepted for final judging. This was not a trivial matter, whether you consider the number of submissions or the breadth of content and quality. The accepted submissions were compiled onto a DVD for viewing by the jurors. Each juror received a jury packet containing copies of the DVD, jury instructions, and various other relevant information.

The jurors then proceeded individually through their selection process by ranking the top submissions within each of the categories of Fine Art / Experimental, Storytelling / Narrative, Character, and Visual Effects. Jury members utilized the prototype web-based mechanisms to record their ranking. After the jury members had recorded their decisions, the results were tallied.

The next step involved preparation of the accepted submissions, to include category winners and honorable mentions, for presentation during the Educators Program at the conference in Los Angeles. For presentation purposes, the sub-missions are used in their pristine form, including logos and credits and such.

The jury accepted 35 works to be judged, which represent 56% of the total entries received. Of the 35 judged entries, the top 12 were selected as Honor-able Mentions or Category Winners. The top ranking entry in each category is distinguished as the Category Winner.

Category Winners

- **Fine Art Experimental**
 - Title: Deja Vue
 - Student: Alexandre Gavrilev
 - Department: 3D Animation
 - School: Media Design School
 - Instructor: Alfredo Luzardo

- **Storytelling / Narrative**
 - Title: Smile
 - Student: Chris Mait
 - Department: Fine / TV
 - School: Chapman University
 - Instructor: Adam Rote

- **Character**
 - Title: LeViel Homme et Les Poissons (The Old Man and the Fish)
 - Student: David Boisier
 - Department: Animation
 - School: Savannah College of Art and Design
 - Instructor: Cheryl Cabrera

- **Visual Effects**
 - Title: The Audition
 - Student: Ryan Heniser, Scott Minter, Anthony Kramer
 - Department: Animation
 - School: Savannah College of Art and Design
 - Instructor: Joe Pasquale
SPACE-TIME student competition/interactive

Each year, the ACM SIGGRAPH Education Committee sponsors the SPACE-TIME Student Interactive Competition. The competition is open to all students and serves as a showcase for advanced interactive computer graphics techniques. This year, students were asked to create a project designed to inform, or educate the user. The competition was not limited to formal academic subjects.

The competition is open to both online and stand alone projects. Online projects are those projects intended for distribution on LANs or on the internet. These projects would typically be viewed using a web browser with commercially available plug-ins. Stand alone projects are intended for distribution via CD, DVD, kiosk, or personal computer. These projects would typically consist of a self running executable file sometimes with linked data files.

Entries were judged on the basis of design, originality, interactive techniques, technical excellence, and artistic merit. The jury was looking for submissions that pushed the limits of the technology and that provided a rich experience for individuals to interact with the work.

The jury this year chose to honor three projects.

First Place
Student: Garmen Yip
Title: Poetic Waves
School: Academy of Art University, San Francisco, California, USA
Instructor: Lourdes Livingston

Second Place
Students: Adam Tanner, Yacoub Slaise, Ali Hajeeh, Sadeq Al-Qassas, Noora Alibinali, Noora Abdula
Title: A Decade of Creative Technology
School: Leeds Metropolitan University, Leeds, England, UK
Instructor: Duncan Foley

Honorable Mention
Student: Ryan Dorhorst
Title: Test Your Toaster Skills
School: University of Wisconsin/Stevens Point, Stevens Point, Wisconsin, USA
Instructor: John O. Smith

Coordinator
Stephen Wroble, Professor
Computer Graphics Technology Program
Schoolcraft College, USA

Jurors
Petronio A. Bendito, Professor
Department of Visual & Performing Arts
Purdue University, USA

Duncan Foley, Senior Lecturer
School of Engineering
Leeds Metropolitan University, UK

Matthew Mohr, Artist and Interactive Media Producer
Jersey City, New Jersey, USA

Simon Thomson, Senior Lecturer
School of Engineering, Leeds Metropolitan University, Leeds, UK
call for submissions 2006

The ACM SIGGRAPH Education Committee (ASEC) is sponsoring the SPACE-TIME Student Competition. The juried competition in print, linear animation and interactivity provides an excellent opportunity for students working in computer based media to exhibit their creative work nationally and internationally. It is open to all students currently attending elementary or secondary schools, colleges or universities. We encourage professors and teachers to have their students enter this prestigious competition.

Selected projects will be on exhibit in Boston, Massachusetts at SIGGRAPH 2006. Winning entries will also tour nationally and internationally for approximately one year with the traveling show conducted by the ACM SIGGRAPH Education Committee. Selected projects or project segments from the entries may be included on the ACM SIGGRAPH Education Committee Website and in promotional materials distributed at the conference. The first place winner in each competition will receive one student conference passport to the SIGGRAPH Conference.

General Rules of the Competition

- All entries must have been created while the student was currently attending a school program (work completed last year is also acceptable).
- These are juried shows. Entries will be judged on the basis of content, design, originality, technical excellence, and artistic merit. Preference will be given to submissions that push the limits of the technology available or involve combinations of technologies.
- Each student may enter one project per presentation style.
- Submitted media will not be returned.
- Entries will not be considered without a completed entry form.
- Illegible and incomplete forms will not be considered or reviewed.
- Nothing on the entry form is optional. Be sure that you fill out the form completely.

Submissions

ALL ENTRIES MUST BE RECEIVED BY MAY 1st

Official form is located at:

http://www.siggraph.org/education/conferences/S2006/cfp/SPACE-TIME.htm

Division of Presentation Style: Print

- Following the theme is required for print entries.
- All artwork must include the text “SIGGRAPH 2006 and “Boston, MA” (Massachusetts can also be spelled out).
- Image size is 11” x 17” at 200 ppi in a PSD, TIF or PDF format.
- The original file must be accompanied with a JPEG file 388x600 at 72 ppi.
- Entry form must have a letter-size hard copy of the poster image attached to it. Please DO NOT send full size or mounted prints.
- You must have written authorization for any copyrighted imagery used in the work.

Submit print entries to:
Michael J. Mehall,
Schoolcraft College
Computer Graphics Technology
18800 Haggerty Road
Livonia, MI 48152-2696
mmehall@schoolcraft.edu

Linear Animation

Projects will be accepted in the following categories:

- fine art/experimental animation
- story-telling/narrative animation, Individual
- story-telling/narrative animation, Group
- character animation
- visual effects animation
- animation for interactive or education

Entries should not exceed five minutes in length.

- It is preferred the piece be submitted in completed form, though works in progress may be submitted so long as enough of the work is completed for evaluation and so long as a completed version will be ready for final submission by June 15th.
- Both individual and group projects are welcome.
- You must have written authorization for any copyrighted sound or imagery used in the work.
- Submissions should be made as a Quicktime .mov digital file on CD or DVD Data mediums. Submitted media will not be returned.
- Two versions of the submission are required: One with name/school/software credits, and one without credits for blind judging.
- A reference still image is required: 3”h x 4”w @ 300dpi (900px x 1200px) in .tif format.

Submit animation entries to:
Jacob S. Pollak
Schoolcraft College
Computer Graphics Technology
18800 Haggerty Road
Livonia, MI 48152-2696
jspollak@detroitcreative.com

Division of Presentation Style:

Interactivity

- The submission must be interactive. People must be able to experience the project directly, individually or in small groups.
- It is preferred the piece be submitted in completed form, though works in progress may be submitted so long as enough of the work is completed for evaluation and so long as a completed version will be ready for final submission by June 15th.
- Submission must provide final archived version on CD, DVD or other media (Zip, Jaz or diskette). Submitted media must be clearly labeled.
- Both individual and group projects are welcome.
- You must have written authorization for any copyrighted sound or imagery used in the work.
- You must include a listing of required plug-in components needed to view the site and/or preferred browser.
- You must include full credits.

Submit interactivity entries to:
Stephen Wrobleski
Schoolcraft College
Computer Graphics Technology
18800 Haggerty Road
Livonia, MI 48152
swroble@schoolcraft.edu

SIGGRAPH 2006 Educators Program Call for Participation

SIGGRAPH 2006 will be held in Boston, Massachusetts, USA 30 July – 3 August 2006 at the Boston Exhibition and Convention Center. If you are interested in participating in the Educators Program, be sure to check the Website for information and deadlines.

http://www.siggraph.org/s2006/

Educators Grant Program

The educators grant program has been revised to be used primarily to support educators who have work accepted into conference venues. The details for the criteria, submission, and review process will be available in the fall of 2005 on the SIGGRAPH Educators Website:

http://www.siggraph.org/education/