
 Adapting Computer Graphics Curricula to Changes in Graphics

Lewis E. Hitchner
Dept. of Computer Science

California Polytechnic State Univ.
San Luis Obispo, CA U.S.A.

hitchner@csc.calpoly.edu

Henry A. Sowizral
Graphics Division

Sun Microsystems, Inc.
Menlo Park, CA U.S.A.
henry.sowizral@eng.sun.com

Abstract

Introductory computer graphics courses are
changing their focus and learning environments.
Improvements in hardware and software technology
coupled with changes in preparation, interest, and
abilities of incoming students are driving the need
for curriculum change. Past courses focussed on
low- and intermediate-level rendering principles,
algorithms, and software development tools. Many of
these algorithms have migrated into hardware.
Though important knowledge for advanced graphics
programmers, most graphics applications
programmers have no need to study at this level,
much as application programmers have no need to
study hardware systems or assembly level
programming. Courses need to focus on
intermediate- and high-level principles, algorithms,
and tools. A fundamental need in modern graphics
curricula is integration of a 3D graphics API into
the instruction. This paper presents experiences
teaching this focus with both low and high level
graphics programming API's. The experiences were
gained in courses at an undergraduate university
and in multi-day industrial courses for experienced
professional programmers.
Keywords: computer graphics, curriculum.

1. The Changes in Directions of
Introductory Computer Graphics
Courses

The curriculum of courses for the study of computer
graphics has changed and continues to change in
response to technology and student needs. We first
review graphics technology, students, and curricula,
as related to computer graphics instruction during the
three stages of acceptance of a new technology
(ignoring the outlier stages): that of the "Early
Adopters", that of "Early Majority", and that of "Late
Majority"[1]. Next a set of principles and goals for a
new curriculum for introductory computer courses is
presented. We follow this with examples of practical
experience in teaching such a course at a polytechnic
state university and in multi-day short courses for
practising professionals.

1.1. Graphics Technology, Students, and Course
Curricula in the "Early Adopters" Era

From the 1970's through early 1980's computer
graphics courses existed primarily at large
universities. Computer Science education was still in
its infancy and courses in computer graphics were
rare. They were usually specialty courses at a few
schools that could afford expensive graphics
hardware, usually funded by government research
grants. During that time the curriculum emphasis
was on recent developments in research that had not
yet entered the public domain or commercial
software worlds. Research focussed on developing
new techniques, more functionality, and algorithms
that performed more efficiently.

Courses taught during this era assumed the following
about students and graphics systems:
• students were highly motivated technologists

with advanced science and mathematics
preparation (computer science, mathematics,
and engineering majors),

• most students had little or no experience with
the new field of 2D and 3D graphics,

• students should learn all the fundamental
principles, algorithms, and techniques that
researchers had recently developed,

• graphics hardware devices were not widely
available, and they depended upon special
purpose software interfaces.

The curriculum of courses during the pioneer days
reflected these assumptions. Typical topics included:

• an overview of graphics technology and
applications,

• introduction to low level graphics hardware:
CRT's, input devices, processors, peripheral
devices,

• algorithms for performing basic rendering
pipeline operations:
• line and circle drawing (e.g., Bresenham's

Algorithm),
• line and polygon clipping,



• matrix transformations (primarily for 3D
viewing, though also for modeling),

• lighting and shading algorithms, and
• image generation algorithms (polygon scan

conversion, visible surface computation, Z-
buffer)

• introduction to 3D modeling: parametric curve
and surface generation, some procedural
techniques,

• software technology for interfacing graphics
processors and displays to mini-computers and
mainframes using locally developed (one-of-a-
kind), or proprietary commercial, software
function libraries.

Most graphics textbooks used during this era
reflected these assumptions. University courses
followed these assumptions and covered topics with
the same emphasis as stressed in popular textbooks.
During this era there was also somewhat of an
elitism. Only computer scientist-technologists with
advanced university degrees were capable of
developing (or even using) complex graphics display
programs.

1.2. Graphics Technology, Students, and Course
Curricula in the "Early Majority" Era

By the early 1980's, graphics technology became
lower priced and more widely available. Graphics
workstations, such as those made by Evans and
Sutherland, SGI and other vendors, provided high-
powered processors for those schools able to afford
them. Graphics peripheral processors (e.g., the AED
512) and early versions of PC graphics systems also
became available at somewhat more reasonable
prices.

Early attempts at graphics software standardization
occurred during this era. Some API's were short
lived or never widely used (e.g., the "original"
graphics standard, CORE), or were extended and
revised as new needs and features evolved (e.g.,
GKS to GKS-3D, PHIGS to PHIGS+). Such moving
targets were not very successful at becoming widely
adopted. Proprietary graphics software packages
dominated the industry.

Students during this era were somewhat similar to
those of the earlier era. However, the popularity of
computer science as a career attracted many more
students from more educationally diverse
backgrounds. Many graphics students during this era
had weaker math and science knowledge than earlier
students. Fundamental topic areas of graphics
(geometry, physics of color and lighting, graphics

hardware device operation) were unfamiliar to them,
and had to be covered in course curricula. More
students had some familiarity with using 2D (and
some 3D) graphics in video games.

Although graphics software was more standardized,
educators and textbook authors were wary of
teaching students the "API du jour". They avoided
teaching standards that were likely to be soon out of
date. Instead, most courseware developers designed
their own generic, "standard-like" software packages
to use in accompaniment with a particular text or
graphics hardware system. It was also common for a
university or individual instructor to write his or her
own graphics package (often publicly shared with
other universities via anonymous ftp in the pre-
WWW days). Unfortunately, these "teaching API's"
were often minimal sets of functions. They were
sufficient for learning the principals of graphics
software development, but were not representative of
real-world, industrial-strength packages. And, of
course, knowledge of them was not portable to
another school or to a job. However, since most
student assignments were small, one-shot programs
and never lived long enough to get to the
maintenance phase of their life cycle, use of a "toy"
API was acceptable. That met the goal of providing
the necessary learning experience. Of course, after
graduation, the employers of these students had to
train them to use "real world" graphics software
systems.

In response to the availability of and interest in
graphics technology, many computer science
departments adopted graphics as a part of their
curriculum. The ACM Curriculum '91 [2] specified a
graphics course as a technical elective. The use and
development of graphics applications had now
become accessible to any computer, math,
engineering, or science student who enrolled in a
university graphics course.

1.3. Graphics Technology, Students, and Course
Curricula in the "Late Majority" Era

Current, late 1990's graphics hardware is orders of
magnitude faster and cheaper, and it is much more
robust and fully functioned, than earlier technology.
The prevalence of personal computers with low cost,
high-performance 3D graphics accelerators, is the
dominant technology. However, extreme increases in
performance to price ratios have occurred for
products at all pricing levels.

Furthermore, graphics hardware technology has
evolved to a state where rendering algorithms are



specialized for high performance. Certain aspects of
geometry representation, lighting and shading, and
interaction handling are primarily implemented
within restricted preconditions rather than general
purpose ones. For example, most modern graphics
rendering hardware either requires all geometry to be
represented using triangles only or else is tuned for
highest performance using triangles. Also, some
current 3D graphics hardware systems implement the
entire OpenGL rendering pipeline in hardware.

Nearly as great an increase in performance and
functionality has occurred for graphics software. The
most significant aspect of software evolution has
been the emergence and acceptance of standardized
graphics software API's (Application Programmer
Interfaces). Today there are several standard 3D
graphics API's used in industry. The three leading,
nearly universally used "low level" API's are
OpenGL (evolved from SGI's proprietary GL and
now available on nearly all platforms), Microsoft's
Direct3D (Windows platforms), and Apple's
QuickDraw 3D (Apple platforms). There are also
many high level 3D API's, though currently there is
not the dominance by one or two as there is at the
low level.

In addition to graphics API's there are four other
significant factors in graphics software development:

1. Powerful, low cost IDEs (Integrated
Development Environments) for rapid and easy
code development and debugging. For example:
Microsoft and Imprise (formerly Borland)
products.

2. Extensive libraries of general purpose support
functions that provide higher level graphics
capabilities and simplified GUI development,
most of which are either free or very reasonably
priced. For example: GLUT (GL Utility
Library), MFC (Microsoft Foundation Classes).

3. A number of powerful software packages for
high level, application independent development
such as ray tracing and animation systems
(many of which are public domain). For
example: POV Ray.

4. The World Wide Web and its wealth of free and
instantly accessible demos, software tools, data
sets, and human resources (via email,
newsgroups, and chat sessions).

Graphics students of today are quite different from
those in earlier years. Some characteristics are:

1. Most technical university students (i.e.,
computer science, engineering, math, or science

students) enter a first course in computer
graphics with significant prior exposure to
graphics concepts, such as lighting, perspective,
and 3D viewing and navigation. Many students
have had significant programming experience,
and it is not uncommon for them to have already
written 2D and 3D graphics programs.

2. Although most students come to school with
greater computer skills and graphics experiences
than their predecessors, on the other hand, many
arrive with greater handicaps. Even among
engineering and computer science students, their
mathematical, problem solving, and logical
reasoning skills appear weaker than in prior
years.

In the opinion of these authors, contemporary
curricula of most university level graphics courses
and textbooks do not appropriately emphasize the
most critical aspects of graphics hardware
technology, nor have they appropriately adapted to
the backgrounds of their students.

It is no longer necessary to introduce today's students
to such topics as a pixel, a bit-mapped image, a color
palette, or basic RGB color systems. For many, even
more advanced topics such as 3D viewing, 3D
navigation, and texture mapping are familiar. Avid,
even casual, web-surfers or PC gamers of today are
familiar with using these terms and features.

Many fundamental algorithms and procedures of
graphics are no longer relevant, even though they are
pedagogically valuable. For example, Bresenham's
line and circle algorithm and the polygon scan
conversion algorithm are not relevant. Such
operations are done in very low level hardware (e.g.,
microcode or ASIC's) and even there, traditional
algorithms are not always used. Clipping operations
are also buried deep within the hardware. Cohen-
Sutherland line clipping and re-entrant polygon
clipping algorithms are good intellectual exercises
for today's students, but have less relevance to
helping them learn useful graphics software
development techniques.

Now that small set of graphics API's are nearly
universally used (and also becoming more similar),
students should learn to apply the fundamental
principles of graphics within these environments, not
within make-believe, "toy" software environments.
A few recent textbooks integrate modern API's, and
one of them [3] has been adopted by a number of
universities. However, to our knowledge no
textbooks fully meet the criteria of presenting



graphics technology in the context of today's
hardware and software systems.

Regardless of criticisms of graphics education
weaknesses, the accessibility and usability of
computer graphics technology today is truly
phenomenal. No longer are those who study and use
graphics members of an elite club. Nor are they
restricted to university engineering and science
students. We now have experienced the
”democratization” of computer graphics.

2. New Models for Introductory Graphics
Courses: SIGCSE and SIGGRAPH
Panels

In response to the need for modernizing the curricula
of graphics instruction, a panel at the recent ACM
SIGCSE (Assoc. for Computing Machinery, SIG
Computer Science Education) Technical Symposium
[4] chaired by one of this paper's co-authors,
discussed and presented a proposal for contemporary
computer graphics curricula. In addition to the panel,
a Birds-of-the-Feather session co-sponsored by the
SIGGRAPH Education Comm. at the same
conference held discussions following the panel. A
similar panel with three of the four same panelists
has been submitted and accepted for presentation at
the ACM SIGGRAPH '99 conference (Los Angeles,
August 1999).
This panel proposed the following philosophy of the
first graphics course:

• Computer graphics is inherently 3D and courses
should be also.

• The fundamental subject of a computer graphics
course is geometry and how it is expressed in
computational terms. Thus, geometry is a major
part of the introductory course. Geometry is
expressed in terms appropriate to the field, such
as coordinate systems, transformations, and
surface normals. The basic shape is the triangle.

• Computer graphics is intrinsically visual, and
even the most technically oriented graphics
practitioner must be aware of the visual effects
of algorithms. Unlike other areas of computer
science, algorithms must be considered not only
for time and memory usage, but also for their
visual effect.

• Besides geometry, computer graphics is about
light and surfaces, and about developing
algorithms to simulate their interplay. Courses
need to include material about light and surface
properties and about the distinction between the

ways various algorithms present light and
surfaces visually.

• Computer graphics has matured to a state in
which there are a small number of high-level
API's that support all the fundamental concepts
needed for early work. Courses should be built
upon this kind of high-level approach.

• Computer graphics should be interactive.
Courses should include interactive projects and
cover event-driven programming.

3. Experiences in Teaching Introductory
Graphics Courses

One co-author has taught undergraduate university
graphics courses from 1984-1988 at the Univ. of
Calif., Santa Cruz, and from 1995 to present at
California Polytechnic State University (Cal Poly).
The syllabus and topics emphasis of courses has
shifted significantly.

The original syllabi were similar to that of the "Early
Majority" era model, based upon the same
assumptions about available graphics technology and
students as stated above. The topic focus was on
fundamentals (hardware devices, geometry, viewing,
lighting, and shading) and algorithms for
implementing the rendering pipeline. Interaction
methods were limited to fairly simple event
handling, and they used console text i/o without a
GUI. Some hierarchical modeling was taught using
modeling transforms implemented by the
programmer. Early versions of the course used a
"home grown" API (implemented on top of a device
dependent 2D graphics API). Later versions
migrated to proprietary versions of GL (SGI and
HP). Typical programming lab assignments included
implementation of Bresenham's line drawing,
Cohen-Sutherland line clipping, re-entrant polygon
clipping, and simple hierarchical modeling
applications.
The 1996-98 Cal Poly graphics courses use modern
API's. The co-author teaches a version that uses
OpenGL for the first half of the course, and uses
Open Inventor for the second half [5]. In this course
the topic focus is also on fundamentals. But,
instruction in implementation techniques has shifted
to higher level aspects of rendering, event-driven
interaction handling with GUI's, complex
hierarchical modeling including extensive study of
scene graphs, and software design using the two
API's. The first lab assignment draws complex 3D
primitive shapes with interactive control of color,
orientation, and line style. A second lab assignment
draws chairs, a table, and a floor and requires
interactive control of position and orientation for



each object and for the viewpoint. A third lab uses
Open Inventor to model a 16-jointed robot with
interactive control for joint manipulation. This lab
also requires model development using a graphical
scene graph editor without writing program code.

4. The Future: Java 3D as a Learning
Environment for Introductory Graphics
Courses

1.4. Overview of Java 3D Design Philosophy and
Features

Java 3D is an API used for writing 3D graphics
applications and applets. It is a library of basic and
utility classes written in the Java language. Java 3D
is platform independent and extends Java's "write
once, run anywhere" benefits for application
developers. It also integrates well with the Internet
because applets written using Java 3D have access to
the entire set of Java classes. A complete description
of the Java 3D design philosophy and its features is
available in published texts and online web
documents [6,7,8].
The Java 3D programming paradigm includes these
principles:
• Fully object-oriented implementation
• Classes are extensible and compatible with all

other Java 2 Platform libraries
• Scene Graph based for both geometry and

behaviors
• High performance a primary design and

implementation philosophy:
• Layered Implementation: Native code

based, aiming at hardware acceleration,
• Application programmer can specify what

will change so that system can perform
optimization,

• Supports multiple rendering Modes:
Immediate, Retained, Compiled-retained

1.5. Justification for Java 3D As A Learning
Environment for Beginning Students

Although at first glance Java 3D may seem like an
API most applicable for experienced professionals
developing production quality software, several
aspects make it desirable as an API for beginners.

• Platform independence
Students usually prefer to work in labs at school,
on their home computers, and, even at their
place of work (for those employed full or part-
time). Java and Java 3D's platform
independence greatly simplifies portability, not
only for 3D graphics but also for 2D GUI's.

• Cost
The purchase price is zero, and there is no
software maintenance cost. This is a significant
factor for schools, as well as for students.

• Programming Paradigm
The fully object-oriented environment is
consistent with training students receive in their
prerequisite courses. There is no need to kludge
together OO with non-OO procedures.

• High Performance
Students are accustomed to high performance --
or at least what they perceive to be high
performance. The many PC games and Web
applets that present apparent high performance
rendering raise expectations. However, they can
cause frustration for students if they are limited
to programming lab examples that appear
simplistic by comparison. A significant aspect of
graphics education is the motivation provided by
its appealing real-time, interactive, visual
results. If that motivation is frustrated by low
performance, the learning that occurs will be
diminished.

5. Experiences in Adapting Course
Curricula to Changes in Graphics
Technology

We have put our recommendations into practice. In
Spring 1999 one co-author taught a revised version
of the Cal Poly undergraduate Introduction to
Graphics course using OpenGL and Java 3D APIs.
During Winter and Spring 1999 the other co-author
taught three courses, varying in duration from one to
three days, on Introduction to Java 3D for
experienced professionals.

In the current university environment, students are
entering graphics courses with less foundational
knowledge than in the past. Although most students
come to school with much greater exposure to
computers and graphics, they have less exposure to
mathematics, problem solving, and less of an idea
where they want to focus their careers. Furthermore,
the field of graphics has expanded greatly since its
inception, and given the new APIs, computer
graphics is no longer the exclusive province of
experts. The challenge for educators is to provide
enough information so students can learn graphics
without requiring them to becomes masters of a
particular sub-discipline. After all, twelve-year-olds
are producing beautifully ray-traced images without
having any concept of how ray tracing works.



A high level graphics API provides educators with
the ability to introduce a broad range of fundamental
concepts without detouring into the details important
only to graphics professionals. Despite the higher
level presentation of concepts, students can quickly
learn how to write useful and compelling graphic
applications. In the process, they are exposed to
enough graphics concepts that they can decide
whether to devote more of their student and
professional career to graphics.
In the Cal Poly CSC 471 Introduction to Graphics
Spring 1999 course [9] students used OpenGL and
Java 3D APIs, a low level and high level API
respectively. These APIs allow topics to be covered
quickly in both breadth and depth. Programming
assignments using a high level API (Java 3D) allow
students to produce quite substantial results within a
short period of time. In one programming
assignment students wrote a Java 3D program to
display a humanoid-like robot with 16 rotational
joints and interactive behaviors that allow run-time
modification of the joint angles. This project was
completed within 3 weeks of their introduction to
Java 3D (and, for some students, within 3 weeks of
their first exposure to Java after having been trained
in C++). At the same time students were learning the
fundamental concepts of a scene graph and were
solidifying their knowledge of complex transform
operations, they also learned the details of Java 3D
scene graph implementation.

Experienced computer professionals have
significantly more exposure to mathematics, problem
solving and logical thinking. However, when they
decide to study graphics, they often revert to
“student mode”. Presentation order, thus, remains
important. Fundamental material must be introduced
in a constructive order rather than deconstructive
order. Otherwise students become confused and
frustrated. Although experienced professionals may
be able to solve the most complex problems without
hand holding -- outside the classroom -- when they
become students they require the smallest details to
be completely specified. This is not surprising, since
much like university students they also cannot
distinguish between fundamental concepts and
unimportant details.

This becomes more of an issue given the breadth and
depth of topics within the graphics field today and
the short time frame of a typical professional short
course. Despite this challenge, higher level APIs
allow educators to introduce breadth as well as to
delve into selected topics in depth within short time
frame courses. By emphasizing fundamental ideas an
educator can start such students in the necessary

direction and leave them with sufficient landmarks to
allow the students to explore the details further on
their own.

6. Summary and Conclusions

Graphics technology has changed vastly in the nearly
three decades since researcher-educators first started
passing their knowledge on to students. Students and
computing environments have also changed
significantly. Course curricula and textbooks have
been slow to adapt and have not kept up with these
changes. Proposals for adapting curricula to match
modern technological requirements have been
presented here and elsewhere. Personal experience
with such adaptation in university courses and in
industrial short courses has demonstrated the
effectiveness of using modern, high-level API's and
emphasis upon student-centered learning.

References:

[1] Geoffrey A. Moore, Crossing the Chasm,
HarperBusiness, 1991.

[2] Alan B. Tucker and Bruce H. Barnes,
editors, Computing Curricula 1991: Report
of the ACM/IEEE/CS Curriculum Task
Force, ACM Press/IEEE Computer Society
Press, 1991.

[3] Edward Angel, Interactive Computer
Graphics: A top-down approach with
OpenGL, Addison-Wesley Longman, 1997.

[4] Lewis Hitchner, Steve Cunningham, Scott
Grissom, and Rosalee Wolfe, Computer
Graphics: The Introductory Course Grows
Up, Panel session, Proceedings of the 30th

SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’99),
New Orleans, LA, USA, March 24-26, 1999.

[5] Lewis E. Hitchner, CSC 455 course web
page, Spring 1998,
http://www.csc.calpoly.edu/~hitchner/CSC4
55.S98

[6] Henry Sowizral, Kevin Rushforth, and
Michael Deering, The Java 3D API
Specification, Addison-Wesley Longman,
1995.

[7] Henry Sowizral, Kevin Rushforth, and
Michael Deering, The Java 3D API
Specification
http://java.sun.com/products/java-
media/3D/forDevelopers/j3dguide/j3dTOC.d
oc.html

[8] Java 3D White Paper,
http://java.sun.com/marketing/collateral/3d_
api.html



[9] Lewis E. Hitchner, CSC 471 course web
page, Spring 1999,
http://www.csc.calpoly.edu/~hitchner/CSC4
71


