Introduction to Programming with Java 3D

Lecturers

Henry A. Sowizral (Organizer)

henry.sowizral@eng.sun.com
Sun Microsystems, Inc.

David R. Nadeau
nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau
San Diego Supercomputer Center
University of California at San Diego

Tutorial notes sections

Abstract
Preface
Lecturer information

Using the Java examples
Tutorial slides

Introduction to Programming with Java 3D

Abstract

Java 3D is a new cross-platform API for developing 3D graphics applications in Java. Its feature set is
designed to enable quick development of complex 3D applications and, at the same time, enable fast anc
efficient implementation on a variety of platforms, from PCs to workstations. Using Java 3D, software
developers can build cross-platform applications that build 3D scenes programmatically, or via loading
3D content from VRML, OBJ, and/or other external files. The Java 3D API includes a rich feature set

for building shapes, composing behaviors, interacting with the user, and controlling rendering details.

In this tutorial, participants learn the concepts behind Java 3D, the Java 3D class hierarchy, typical usage
patterns, ways of avoiding common mistakes, animation and scene design techniques, and tricks for
increasing performance and realism.

Introduction to Programming with Java 3D

Preface

Welcome to these tutorial notes! These tutorial notes have been written to give you a quick,
practical, example-driven overview @va 30 the cross-platform 3D graphics API for Java. To

do this, we’ve included almost 600 pages of tutorial material with nearly 100 images and over 50
Java 3D examples.

To use these tutorial notes you will need:
O An HTML Web browser
O Java JDK 1.2 (Java 2 Platform) or later
O Java 3D 1.1 or later

Information on Java JDKs and Java 3D is available at:
http://lwww.javasoft.com
What's included in these notes

These tutorial notes primarily contain two types of information:

1. General information, such as this preface
2. Tutorial slides and examples

The tutorial slides are arranged as a sequence of 600+ hyper-linked pages containing Java 3D
syntax notes, Java 3D usage comments, or images of sample Java 3D applications. Clicking on the
file name underneath an image brings up a window showing the Java source file that generated the
image. The Java source files contain extensive comments providing information about the
techniques the file illustrates.

Compiling and executing the Java example file from the command-line brings up a Java
application illustrating a Java 3D feature. Most such applications include menus and other
interaction options with which you can explore Java 3D features.

The tutorial notes provide a necessarily terse overview of Java 3D. We recommend that you invest
in a Java 3D book to get thorough coverage of the language. One of the course lecturers is an

author of the Java 3D specification, available from Addison-WeSleyJava 3D API
Specification ISBN 0-201-32576-4, 1997.

Use of these tutorial notes

We are often asked if there are any restrictions on use of these tutorial notes. The answer is:

Parts of these tutorial notes are copyright (c) 1999 by Henry A. Sowizral, and copyright (c)
1999 by David R. Nadeau. Users and possessors of these tutorial notes are hereby granted a

nonexclusive, royalty-free copyright and design patent license to use this material in
individual applications. License is not granted for commercial resale, in whole or in part,
without prior written permission from the authors. This material is provided "AS 1S" without
express or implied warranty of any kind.

You are free to use these tutorial notes in whole or in part to help you teach your own Java 3D
tutorial. You may translate these notes into other languages and you may post copies of these notes
on your own Web site, as long as the above copyright notice is included as well. You may not,
however, sell these tutorial notes for profit or include them on a CD-ROM or other media product
without written permission.

If you use these tutorial notes, we ask that you:

1. Give us credit for the original material
2. Tell us since we like hearing about the use of our material!

If you find bugs in the notes, please tell us. We have worked hard to try and make the notes
bug-free, but if something slipped by, we’d like to fix it before others are confused by our mistake.

Contact

David R. Nadeau
University of California
NPACI/SDSC, MC 0505
9500 Gilman Drive
La Jolla, CA 92093-0505

(619) 534-5062
FAX: (619) 534-5152

nadeau@sdsc.edu
http://www.sdsc.edu/~nadeau

Introduction to Programming with Java 3D

| ecturer information

Henry A. Sowizral (Organizer)
Title Distinguished Engineer
Affiliation Sun Microsystems, Inc.

Address 901 San Antonio Road, MS UMPK14-202
Palo Alto, CA 94303-4900

UPS, Fed Ex: 14 Network Circle
Menlo Park, CA, 94025

Email henry.sowizral@eng.sun.com

Henry Sowizral is a Distinguished Engineer at Sun Microsystems where he is the chief architect of
the Java 3D API. His areas of interest include virtual reality, large model visualization, and
distributed and concurrent simulation. He has taught tutorials on topics including expert systems
and virtual reality at conferences including COMPCON, Supercomputing, VRAIS, and
SIGGRAPH. Henry has taught Java 3D at SIGGRAPH, Eurographics, Visualization, JavaOne,
VRAIS, and other conferences.

Henry is a co-author of the bodke Java 3D API Specificatippublished by Addison-Wesley.
He holds a B.S. in Information and Computer Science from the University of California, Irvine,
and an M.Phil. and Ph.D. in Computer Science from Yale University.

David R. Nadeau
Title Principal Scientist

Affiliation San Diego Supercomputer Center (SDSC)
University of California, San Diego (UCSD)

Address NPACI/SDSC, MC 0505
9500 Gilman Drive
La Jolla, CA 92093-0505

Email nadeau@sdsc.edu
Home page http://www.sdsc.edu/~nadeau

Dave Nadeau is a principal scientist at the San Diego Supercomputer Center, a national research
center specializing in computational science and engineering, located on the campus of the
University of California, San Diego. His areas of interest include scientific visualization and

virtual reality, He has taught Java 3D and VRML at multiple conferences including SIGGRAPH,
Eurographics, Supercomputing, WebNet, WMC/SCS, VRAIS, and Visualization.

Dave is a co-author dthe VRML 2.0 Sourcebogkiblished by John Wiley & Sons. He holds a

B.S. in Aerospace Engineering from the University of Colorado, Boulder, an M.S. in Mechanical
Engineering from Purdue University, and is in the Ph.D. program in Electrical and Computer
Engineering at the University of California, San Diego.

Introduction to Programming with Java 3D

Using the Java examples

These tutorial notes include dozens of separate Java applications illustrating the use of Java 3D.
The source code for these applications is included in files.jaith file name extensions.

Compiled byte-code for these Java fileaas included To use these examples, you will need to
compile the applications first.

Compiling Java

The source code for all Java 3D examples is irtheples folder. Images, sound, and geometry
files used by these examples are also contained within the same foREsxDRE.txt file in the
folder lists the Java 3D applications included therein.

To compile the Java examples, you will need:

O The Java 3D API 1.1 class files (or later)
O The Java JDK 1.2 (Java 2 Platform) class files (or later)
O A Java compiler

The JDK 1.2 class files are available for free from JavaSoft at http://www.javasoft.com.

The Java 3D class files are available for free from Sun Microsystems at
http://www.sun.com/desktop/java3d.

There are multiple Java compilers available for most platforms. JavaSoft provides the Java
Development Kit (JDK) for free from its Web site at http://www.javasoft.com. The JDK includes
thejavac compiler and instructions on how to use it. Multiple commercial Java development
environments are available from Microsoft, Symantec, and others. An up to date list of available
Java products is available at Developer.com’s Web site at
http://www.developer.com/directories/pages/dir.java.html.

Once you have the Java API class files and a Java compiler, you may compile the supplied Java

files. Unfortunately, we can't give you explicit directions on how to do this. Each platform and
Java compiler is different. You'll have to consult your software’s manuals.

Running the Java 3D Examples

To run a Java application, you must run the Java interpreter and give it the Java class file as an
argument, like this:

java MyClass

The Java interpreter looks for the filgClass.class in the current directory and loads it, and any
additional files needed by that class.

Title Page

Introduction to Programming with Java 3D

Table of contents

Morning

Section 1 - Introduction, Scene graphs, Shapes, Appearance

Welcome 1
Introduction 5
Building 3D content with a scene graph 24
Building 3D shapes 65
Controlling appearance 103
Section 2 - Groups, Transforms, Texture mapping, Lighting
Grouping shapes 138
Transforming shapes 149
Using special-purpose group: 171
Introducing texture mapping 196
Using texture coordinates 212
Using raster geometry 235
Lighting the environment 245
Afternoon
Section 3 - Universes, Viewing, Input, Behaviors
Building a virtual universe 272
Introducing the view model 283
Viewing the scene 321
Building a simple universe 360
Using input devices 366
Creating behaviors 381
Section 4 - Interpolators, Picking, Backgrounds, Fog
Creating interpolator behaviors 409
Using specialized behavior: 437

1

Welcome

Introduction to Programming with Java 3B

Tutorial schedul
Tutorial scop

Picking shapes

Creating backgrounds
Working with fog

Conclusions

Extended notes

Section 5 - Text geometry, Raster geometry, Advanced texture mapping

Building text shapes
Controlling the appearance of textures

Adding sound

Controlling the sound environment

2

Welcome

448
469
489
516

519
535
552
587

Introduction to Programming with Java 3D

Welcome to the tutorial!

3

Welcome

Tutorial schedule

Morning
Section 1 Introduction, Scene graphs, Shapes, Appearance
Section 2 Groups, Transforms, Texture mapping, Lighting

Afternoon
Section 3 Universes, Viewing, Input, Behaviors
Section 4 Interpolators, Picking, Backgrounds, Fog

Extended notes

Section 5 Text geometry, Advanced texture mapping, Sound,
Sound environment

5

Introduction
What is Java 3D? 6
What is Java 3D? 7
What does Java 3D do? 8
What does Java 3D do? 9
What application areas can use Java 35?2 10
Examples: Scientific Visualizatior 11
Examples: Abstract Data (Financiaty 12
Examples: Medical Education 13
Examples: CAD 14
Examples: Analysi 15
Examples: Animations: 16
Examples: 3D Logo: 17
Examples: Scientific Visualizatior 18
What software do | need to use Java 362 19
What hardware do | need to use Java 3B2 20
How do I run a Java 3D application/applet? 21
How does Java 3D compare with other APis? 22

Summary 23

4

Welcome

Tutorial scope

® This tutorial will:
® Introduce Java 3D concepts and terminology

® Discuss important Java 3D classes
@ lllustrate how to write a Java 3D application or applet

® Discuss typical usage patterns, techniques, and tricks

6

Introduction

What is Java 3D?

® Java 3D is an interactive 3D graphi#gplication Programming
Interface(API) for building applications and applets in Java

® A means for developing and presenting 3D content

® Designed folWrite once, run anywhere
® Multiple platforms (processors and pipes)
® Multiple display environments
® Multiple input devices

7 8

Introduction Introduction
What is Java 3D? What does Java 3D do?
® Raise the programming floor ® Provide a vendor-neutral, platform-independent API within Java
® Integrates with other Java APIs: image processing, fonts, 2D
® Think objects . . not vertices drawing, user interfaces, etc.
® Think content . . not rendering process ® Enable high level application development

® Authors focus upon content, not rendering
® Java 3D handles optimal rendering

9 10
Introduction Introduction
What does Java 3D do? What application areas can use Java 3D?

® Perform rendering optimizations Scientific visualization

°
® Scene management ® Information visualization
® Content culling based upon visibility (frustum) ® Medical visualization
@ Efficient pipeline use (sorting, batching) ® Geographical information systems (GIS)
® Parallel rendering ® Computer-aided design (CAD)
® Scene compilation (reorganization, combination, etc.) ® Animation
® Education

® And achieve high performance
® Draw via OpenGL/Direct3D
® Uses 3D graphics hardware acceleration where available

11

Introduction

Examples: Scientific Visualization

13

Introduction

Examples: Medical Education

12

Introduction

Examples: Abstract Data (Financial)

14

Introduction

Examples: CAD

15

Introduction

Examples: Analysis

¥

17

Introduction

Examples: 3D Logos

16

Introduction

Examples: Animations

18

Introduction

Examples: Scientific Visualization

Anatomy Browser Collaborative Visualization
University of Massachusets Space Science and
and Engineering Center (SSEC)

Brigham and Women'’s
Hospital

19 20

Introduction Introduction
What software do | need to use Java 3D? What hardware do | need to use Java 3D?

® Java development kit ® You will need a 3D graphics accelerator

® Java 2 platform

® Free from http://java.sun.com ® On PCs:

® PC cards are widely available

® Java 3D development kit ® Should support OpenGL 1.1 features

® Java3D 1.1 ® A Direct3D version is in progress

® Free from http://www.sun.com/desktop/java3D ® Linux port uses Mesa
® Sun provides Windows 9x/NT and Solaris ports ® On Suns:

® Creator 3D or Elite 3D hardware
® Linux port is available ® Support OpenGL 1.2
® Other ports come from platform vendors
21 22
Introduction Introduction

How do | run a Java 3D application/applet? How does Java 3D compare with other APIs?
® Java 3D applications: ® "Older" APIs enable only low-level hardware state control

@ Run like any other Java application ® Provideand requiredetailed control

prompt> java myapplication ® OpenGL, Direct3D, low-level game engines

® Java 3D applets: ® "Newer" APIs focus upon high-level content control

® Use theJava plug-inin Netscape or Internet Explorer ® Provide some rendering optimization

® Embeds the applet in a Web page ® Java 3D

® Java plug-in automatically downloads JDK and Java 3D if not ® VRML

already installed ® SGI Openlnventor, Optimizer/Cosmo3D (being phased out)

® SGI-Microsoft "Fahrenheit"

23

Introduction

Summary

® Java 3D is a high-level API for building interactive 3D
applications and applets in Java

® \Write once, run anywhere .in.3D

25

Building 3D content with a scene graph

Building a scene graph

® A scene graplis a "family tree" containing scene data
@ "Children" are shapes, lights, sounds, etc.
® "Parents" are groups of children and other parents
® This defines dierarchicalgrouping of shapes

® The application builds a scene graph using Java 3D classes and
methods

® Java 3D renders that scene graph onto the screen

24

Building 3D content with a scene graph

Building a scene grapp———— 25
Scene graph example——— 26
Sketching a scene graph diagram— 27
Examples of creating large scenes—— 28
Building a scene graph——— 29
Processing a scene graph——— 30
Examples of Java 3D features—— 31
Examples of Java 3D features——— 32
Examples of Java 3D features—— 33
Using scene graph terminology——— 34
Scene graph base class hierarehy— 35
Building a scene graph——— 36
Building a scene graph——— 37
Using universe terminology————— 38
Using branch terminology——— 39
Sketching a universe diagram——— 40
Superstructure class hierarchy—— 41
Building a universe——— 42
Building a universe——— 43
Building scene content——— 44
Loading scene content from files——— 45
Building scene graph superstructure—— 46
Sketching a simple universe diagram 47
Helloworld example—— 48
Helloworld example code——— 49
Helloworld example code———— 50
Helloworld example code———— 51
Helloworld example code———— 52
Helloworld example——— 53
Making a node live—————————— 54
Checking if a node is live————— 55
Compiling a scene grapp——— 56
Compiling a scene grapp——— 57
Controlling access capabilities——— 58

26

Controlling access capabilities— 59
Controlling access capabilities— 60
Controlling access capabilities— 61

Summary ——— 62
Summary —— 63
Summary ———— 64

Building 3D content with a scene graph

Scene graph example

® For example, imagine building a toy airplane:

Assemble those into the final plane

27

Building 3D content with a scene graph

Sketching a scene graph diagram

® Sketching a scene graph diagram can clarify a design and ease
software development

29

Building 3D content with a scene graph

Building a scene graph

® Scene graphs are built from components including:
Shapes (geometry and appearance)

Groups and transforms

Lights

Fog and backgrounds

Sounds and sound environments (reverb)
Behaviors

View platforms (viewpoints)

28

Building 3D content with a scene graph

Examples of creating large scenes

® Java 3D scene graphs may include large numbers of shapes

Landing gear Boom box
192 shapes 11,000 shapes

30

Building 3D content with a scene graph

Processing a scene graph

® Java 3D renders the scene graph
® Scene graph specifies content, not rendering order
® Rendering order is up to Java 3D

® Java 3D uses separate, independent and asynchronous threads
® Graphics rendering
® Sound "rendering"
® Animation "behavior execution"
® Input device management
® Event generation (collision detection)

31 32

Building 3D content with a scene graph Building 3D content with a scene graph
Examples of Java 3D features Examples of Java 3D features
® You can control shape coloration and texture lighting and fog effects . . .
ARL! \\ ‘ I
=]
Monument Colonade
33 34
Building 3D content with a scene graph Building 3D content with a scene graph
Examples of Java 3D features Using scene graph terminology
... shape position, orientation, and size and how those change ® But first, some terminology . . .

over time, and more
® Node an item in a scene graph
® Leaf nodesnodes with no children
® Shapes, lights, sounds, etc.
® Animation behaviors
® Group nodesnodes with children
® Transforms, switches, etc.

Jetsons-Vis
® Node component bundle of attributes for a node
® Geometry of a shape
@ Color of a shape
® Sound data to play

Car Suspension Duke Treadmill

35

Building 3D content with a scene graph

Scene graph base class hierarchy

® Leaf nodes, group nodes, node components, and different types

of all of these lead to . a. Java 3D class hierarchy

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.Node
javax.media.j3d.Group
javax.media.j3d.Leaf
javax.media.j3d.NodeComponent

37

Building 3D content with a scene graph

Building a scene graph

® We need to assemble chunks of content, each in its own scene
graph
® Build components separately

® Assemble them into a common containevirtual universe
® A way to combine scene graphs
® A place to root the scene graph

36

Building 3D content with a scene graph

Building a scene graph

® Build nodes by instantiating Java 3D classes

Shape3D myShapel = new Shape3D(myGeom1, myAppearl);
Shape3D myShape2 = new Shape3D(myGeomz2);

® Modify nodes by calling methods on an instance
myShape2.setAppearance(newAppear2);

® Build groups of nodes
Group myGroup = new Group();

myGroup.addChild(myShapel);
myGroup.addChild(myShape2);

38

Building 3D content with a scene graph

Using universe terminology

® Virtual universe a collection of scene graphs
® Typically one universe per application

® Locale a position in the universe at which to put scene graphs
® Typically one locale per universe

® Branch grapha scene graph
® Typically several branch graphs per locale

39 40

Building 3D content with a scene graph Building 3D content with a scene graph
Using branch terminology Sketching a universe diagram
® Scene graphs are typically divided into two types of branch ® A universe builds superstructure to contain scene graphs

graphs:

® Content branchshapes, lights, and other content
® Typically multiple branches per locale

® View branchviewing information
® Typically one per universe

® This division is optional:
® Content and viewing information can be interleaved in the
same branch (and sometimes should be)

41 42
Building 3D content with a scene graph Building 3D content with a scene graph
Superstructure class hierarchy Building a universe
® Universes and locales are superstructure classes for organizing ® Build a universe
content
VirtualUniverse myUniverse = new VirtualUniverse();

Class Hierarchy ® Build a locale
java.lang.Object

javax.media.j3d.VirtualUniverse Locale myLocale = new Locale(myUniverse);

javax.media.j3d.Locale .

javax.media.j3d.Node ® Build a branch group

javax.media.j3d.Group
javax.media.j3d.BranchGroup BranchGroup myBranch = new BranchGroup();

43 44

Building 3D content with a scene graph Building 3D content with a scene graph

Building a universe Building scene content

® Build nodes and groups of nodes ® Java 3D's rich feature set enables you to build complex 3D

content
g?gﬁsﬁgﬁf;afi :vygv‘r'oig???w(myGeom, myAppear); @ Build content directly within your Java application
myGroup.addChild(myShape); ® Load content from files
® Do both
® Add them to the branch group
® File loaderclasses enable reading content from files in standard
myBranch.addChild(myGroup); formats
® VRML (Virtual Reality Modeling Language)
°
Add the branch graph to the locale ® OBJ (Alias|Wavefront object)
myLocale.addBranchGraph(myBranch); ® L W3D (Lightwave 3D scene)
® others.. ..
45 46
Building 3D content with a scene graph Building 3D content with a scene graph
Loading scene content from files Building scene graph superstructure

® Load an OBJ file describing a ship ® Ultility classes help automate common operations

® Implemented atop Java 3D

® Thesimpleuniverse utility builds a common arrangement of a
universe, locale, and viewing classes

SimpleUniverse mySimple = new SimpleUniverse(myCanva '
mySimple.addBranchGraph(myBranch);

[A3DApplet]

47

Building 3D content with a scene graph

Sketching a simple universe diagram

® A SimpleUniverse ~ encapsulates a common superstructure

49

Building 3D content with a scene graph

HelloWorld example code

® |Import the Java 3D classes . . .

import javax.media.j3d.*;

import javax.vecmath.*;

import java.applet.*;

import java.awt.*;

import com.sun.j3d.utils.geometry.*;
import com.sun.j3d.utils.universe.*;

public class Helloworld

48

Building 3D content with a scene graph

HelloWorld example

® Let's build a multi-colored 3D cube and spin it about the vertical
axis

[Helloworld]

50

Building 3D content with a scene graph

HelloWorld example code

® Build a frame, 3D canvas, and simple universe . . .

public static void main(String[] args) {
Frame frame = new Frame();
frame.setSize(640, 480);
frame.setLayout(new BorderLayout());

Canvas3D canvas = new Canvas3D(null');
frame.add("Center", canvas);

SimpleUniverse univ = new SimpleUniverse(canvas
univ.getViewingPlatform().setNominalViewingTrans

BranchGroup scene = createSceneGraph();
scene.compile();
univ.addBranchGraph(scene);

frame.show();

51 52

Building 3D content with a scene graph Building 3D content with a scene graph
HelloWorld example code HelloWorld example code
® Build 3D shapes within BranchGroup . . . ® Set up an animation behavior to spin the shapes . . .
public BranchGroup createSceneGraph() /I Make a behavor to spin the shape
Alpha spinAlpha = new Alpha(-1, 4000);
BranchGroup branch = new BranchGroup(); RotationInterpolator spinner =
new Rotationinterpolator(spinAlpha, trans);

/I Make a changeable 3D transform spinner.setSchedulingBounds(
TransformGroup trans = new TransformGroup(); new BoundingSphere(new Point3d(), 1000. (
trans.setCapability(TransformGroup.ALLOW_TRANSFO I trans.addChild(spinner);

branch.addChild(trans);
return branch;
/I Make a shape }
ColorCube demo = new ColorCube(0.4);
trans.addChild(demo);

53 54
Building 3D content with a scene graph Building 3D content with a scene graph
HelloWorld example Making a node live

® Which produces a spinning multi-colored 3D cube . . . ® Adding a branch graph into a locale (or simple universe) makes

its nodedive (drawable)

BranchGroup myBranch = new BranchGroup();
myBranch.addChild(myShape);
myLocale.addBranchGraph(myBranch); // make live!

® Removing the branch graph from the locale reverses the effect

myLocale.removeBranchGraph(myBranch);// not live

[Helloworld]

55 56

Building 3D content with a scene graph Building 3D content with a scene graph
Checking if a node is live Compiling a scene graph
® A method orsceneGraphObject queries if a node is live ® A method orsranchGroup compiles the branch, optimizing it for
faster rendering
Method
boolean isLive() Method
void compile()
57 58
Building 3D content with a scene graph Building 3D content with a scene graph
Compiling a scene graph Controlling access capabilities
® Compile a branch gragieforemaking it live ® Nodecapabilities(permissions) control read and write access
BranchGroup myBranch = new BranchGroup(); ® Read or write any attributeeforea node is live or compiled

myBranch.addChild(myShape);
myBranch.compile();
myLocale.addBranchGraph(myBranch); ® Capabilities control accesghile a node is live or compiled

® Keep the number of capabilities small so Java 3D can make more
optimizations during compilation

59

Building 3D content with a scene graph

Controlling access capabilities

® Methods on theceneGraphObject ~ set/clear capabilities

Method

void setCapability(int bit)

void clearCapability(int bit)

boolean getCapability(int bit)

61

Building 3D content with a scene graph

Controlling access capabilities

® Set capabilities while you build your content

Shape3D myShape = new Shape3D(myGeom, myAppear);
myShape.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE

® After a node is live, change attributes that have enabled
capabilities

myShape.setAppearance(newAppear); // allowed

® But you cannot change attributes for which you do not have
capabilities set

myShape.setGeometry(newGeom); // error!

60

Building 3D content with a scene graph

Controlling access capabilities

® Each node has its own read and write capabilities
® Usually a separate capability for each attribute of a node
® Node’s also inherit parent class capabilities
® Each capability has an upper-case name

® For exampleshape3D capabilities include:

® ALLOW_APPEARANCE_READ

® ALLOW_APPEARANCE_WRITE

® ALLOW_GEOMETRY_READ

® ALLOW_GEOMETRY_WRITE

@ ALLOW_COLLISION_BOUNDS_READ

® ALLOW_COLLISION_BOUNDS_WRITE

® Plus capabilities from the parewmide class, including:

® ALLOW_BOUNDS_READ

ALLOW_BOUNDS_WRITE
ALLOW_PICKABLE_READ
ALLOW_PICKABLE_WRITE

°
°
°
® ... and others

62

Building 3D content with a scene graph

Summary

® A scene graplis a hierarchy of groups of shapes, lights, sounds,
etc.

® Your application builds the scene graph using Java 3D classes
and methods

® The Java 3D implementation uses the scene graph behind the
scene to render shapes, play sounds, execute animations, etc.

63

Building 3D content with a scene graph

Summary

® A virtual universeholds everything

® A localepositions éranch graphin a universe
® A branch graphis a scene graph

® A nodeis an item in a scene graph

® A node componerns a bundle of attributes for a node

65

Building 3D shapes

Motivation ————— 66 Summary
Example 67 Summary
Shape3D class hierarchy—————— 68 Summary
Shape3D class methods———— 69
Building geometry using coordinates—— 70
Building geometry using coordinates- 71
Using a right-handed coordinate syste@?2
Using coordinate ordefF—— 73
Using coordinate ordef———— 74

Defining vertces—————— 75
Defining vertices——— 76
Building geometry —————— 77

GeometryArray class hierarchy—— 78
GeometryArray class methods—— 79
GeometryArray class methods—— 80
Building different types of geometry— 81

Building a PointArray ————— 82
PointArray example code——— 83
Building a LineArray ———— 84
LineArray example code————— 85
Building a TriangleArray———— 86
TriangleArray example code———— 87
Building a QuadArray———— 88

QuadArray example code————— 89
Building geometry strips——— 90
GeometryStripArray class hierarchy— 91

Building a LineStripArray —————— 92
Building a TriangleFanArray————— — 93
Building a TriangleStripArray————— 94

Building indexed geometry———————— 95
IndexedGeometryArray class hierarchp6
IndexedGeometryArray class methoes97
IndexedGeometryArray class methoes98

Gearbox exampl 99

64

Building 3D content with a scene graph

Summary

® Adding a branch graph to a locale makdivé and drawable
® Compilinga branch graph optimizes it for faster rendering
® Capabilitiescontrol access to node attributes after a notiesis

or compiled
® Fewer capabilities enables more optimizations

66
Building 3D shapes
Motivation
igi ® A shape3D leaf node builds a 3D object with:
102

® Geometry
® The form or structure of a shape

® Appearance
® The coloration, transparency, and shading of a shape

® Java 3D supports multiple geometry and appearance features

® We'll talk about geometry first, then appearance

68

67
Building 3D shapes

Shape3D class hierarchy

Building 3D shapes

Example

® Theshape3D class extends theaf class

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.Node
javax.media.j3d.Leaf
javax.media.j3d.Shape3D

[GearBox]

70

Building 3D shapes

Building geometry using coordinates

69

Building 3D shapes

Shape3D class methods

® Building shape geometry is like a 3D connect-the-dots game

® Place "dots" at 3@oordinates

® Methods orshape3D set geometry and appearance attributes
® Connect-the-dots to form 3D shapes

Method
® For example, to build a pyramid start with five coordinates

Shape3D()
Shape3D(Geometry geometry, Appearance appearance)
void setGeometry(Geometry geometry)

void setAppearance(Appearance appearance)

71 72

Building 3D shapes Building 3D shapes
Building geometry using coordinates Using a right-handed coordinate system
® Finish the pyramid by connecting the dots to form triangles ® 3D coordinates are given irright-handedcoordinate system

® X = left-to-right
® Y = bottom-to-top
® Z = back-to-front

® Distances are conventionally in meters

73 74
Building 3D shapes Building 3D shapes
Using coordinate order Using coordinate order
® Polygons have a front and back: ® Use theright-hand rule
@ By default, only thefront side of a polygon is rendered @ Curl your right-hand fingers around the polygon perimeter in
® A polygon’swinding orderdetermines which side is the front the order vertices are given (counter-clockwise)
® Most polygons only need one side rendered ® Your thumb sticks out the front of the polygon

® You can turn on double-sided rendering, at a performance
cost

75

Building 3D shapes

Defining vertices

® A vertexdescribes a polygon corner and contains:
® A 3D coordinate
® A color
® A texture coordinate
® A lighting normal vector

® The 3D coordinate in a vertex is required, the rest are optional

7

Building 3D shapes

Building geometry

® Java 3D has multiple types of geometry that use 3D coordinates:

@ Points, lines, triangles, and quadrilaterals
® 3D extruded text
® Raster image sprites

® Geometry constructors differ in what they build, and how you tell
Java 3D to build them

® Let's look at points, lines, triangles, and quadrilaterals first . . .

76

Building 3D shapes

Defining vertices

® A vertex normal defines surface information fighting
@ But the coordinate winding order defines the polygon’s front
and back, and thus the side that is drawn

® [f you want to light your geometry, you must specify vertex
lighting normals
@ Lighting normals must benit length

78

Building 3D shapes

GeometryArray class hierarchy

® All geometry types are derived frog@ometry
® GeometryArray extends it to build points, lines, triangles, and
guadrilaterals

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.NodeComponent
javax.media.j3d.Geometry
javax.media.j3d.GeometryArray

80

79
Building 3D shapes Building 3D shapes
GeometryArray class methods GeometryArray class methods

® Generic methods oBeometryArray — also set colors and texture

® Generic methods oBeometryArray ~ set coordinates and normals
coordinates
® Discussed in the section on shape appearance

Method
void setCoordinate(int index, * coordinate)
void setCoordinates(int index, * coordinate) Method
void setNormal(int index, * normal) void setColor(int index, * color)
void setNormals(int index, * normal) void setColors(int index, * color)
void setTextureCoordinate(int index, * texCoord)
® Coordinate method variants acceg@t , double , Point3f , and void setTextureCoordinates(int index, * texCoord)
Point3d
® Coordinate method variants accegtt andvector3f ® Color method variants accepte , float , Color3f , Coloraf
Color3b , Color4b , andvector3f
® Texture coordinate method variants acaept , Point2f , and
Point3f
81 82
Building 3D shapes Building 3D shapes
Building a PointArray

Building different types of geometry

® A PointArray builds points
® One point at each vertex

® There arel4 different geometry array types grouped into:
® Point size may be controlled by

® Simple geometry:
® PointArray |, LineArray , TriangleArray , andQuadArray
® Strip geometry: shape appearance attributes
® LineStripArray , TriangleStripArray , and
TriangleFanArray
® Indexed simple geometry: Class Hierarchy
® IndexedPointArray , IndexedLineArray , - -
- java.lang.Object
IndexedTr_langIeArray , andlndexedQuadArray javax.media.j3d.SceneGraphObject
® Indexed stripped geometry: javax.media.j3d.NodeComponent
@ IndexedLineStripArray , IndexedTriangleStripArray , javax.media.j3d.Geometry
andindexedTriangleFanArray javax.media.j3d.GeometryArray
javax.media.j3d.PointArray

® Let's look at simple geometry types first . . .

83

Building 3D shapes

PointArray example code

® Create a list of 3D coordinates for the vertices

Point3f[] myCoords = {
new Point3f(0.0f, 0.0f, 0.0f),

}
® Create @ointArray ~ and set the vertex coordinates

PointArray myPoints = new PointArray(
myCoords.length,
GeometryArray.COORDINATES);

myPoints.setCoordinates(0, myCoords);

® Assemble the shape

Shape3D myShape = new Shape3D(myPoints, myAppear);

85

Building 3D shapes

LineArray example code

84

Building 3D shapes

Building a LineArray

® A LineArray builds lines
® Between eaclpair of vertices
® Line width and style may be
controlled by shape appearance
attributes

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.NodeComponent
javax.media.j3d.Geometry
javax.media.j3d.GeometryArray
javax.media.j3d.LineArray

® Create a list of 3D coordinates for the vertices

Point3f[] myCoords = {
new Point3f(0.0f, 0.0f, 0.0f),

}
® Create aineArray and set the vertex coordinates

LineArray myLines = new LineArray(
myCoords.length,
GeometryArray.COORDINATES);

myLines.setCoordinates(0, myCoords);

® Assemble the shape

Shape3D myShape = new Shape3D(myLines, myAppear);

86

Building 3D shapes

Building a TriangleArray

® A TriangleArray builds triangles
® Between eactriple of vertices
® Rendering may be controlled by
shape appearance attributes

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.NodeComponent
javax.media.j3d.Geometry
javax.media.j3d.GeometryArray
javax.media.j3d.TriangleArray

87

Building 3D shapes

TriangleArray example code

® Create lists of 3D coordinates and normals for the vertices

Point3f[] myCoords = {
new Point3f(0.0f, 0.0f, 0.0f),

}
Vector3f[] myNormals = {
new Vector3f(0.0f, 1.0f, 0.0f),

}

® Create ariangleArray and set the vertex coordinates and
normals

TriangleArray myTris = new TriangleArray(
myCoords.length,
GeometryArray. COORDINATES |
GeometryArray.NORMALS);
myTris.setCoordinates(0, myCoords);
myTris.setNormals(0, myNormals);

® Assemble the shape

Shape3D myShape = new Shape3D(myTris, myAppear);

89

Building 3D shapes

QuadArray example code

® Create lists of 3D coordinates and normals for the vertices

Point3f[] myCoords = {
new Point3f(0.0f, 0.0f, 0.0f),

}
Vector3f[] myNormals = {

new Vector3f(0.0f, 1.0f, 0.0f),
}

® Create auadArray and set the vertex coordinates and normals

QuadArray myQuads = new QuadArray(
myCoords.length,
GeometryArray. COORDINATES |
GeometryArray.NORMALS);
myQuads.setCoordinates(0, myCoords);
myQuads.setNormals(0, myNormals);

® Assemble the shape

Shape3D myShape = new Shape3D(myQuads, myAppear);

88

Building 3D shapes

Building a QuadArray

’ ® A QuadArray builds quadrilaterals
’ ® Between eachuadrupleof vertices
® Rendering may be controlled by
shape appearance attributes

Class Hierarchy
java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.NodeComponent
javax.media.j3d.Geometry
javax.media.j3d.GeometryArray
javax.media.j3d.QuadArray

90

Building 3D shapes

Building geometry strips

® Simple geometry types use verticesin . ..
@ pairs, triples, and quadruples to build lines, triangles, and
guadrilaterals one at a time

® Strip geometry uses multiple vertices in . . .
® A chain to build multiple lines and triangles

® You provide a coordinate list (as always)

® You provide lighting normal, color, and texture coordinate
lists (optionally)

® You provide a strip length list
® Each list entry gives the number of consecutive vertices
to chain together

91

Building 3D shapes

GeometryStripArray class hierarchy

® GeometryStripArray extendsseometryArray to build strips of
lines and triangles

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.NodeComponent
javax.media.j3d.Geometry
javax.media.j3d.GeometryArray
javax.media.j3d.GeometryStripArray

javax.media.j3d.LineStripArray
javax.media.j3d.TriangleFanArray
javax.media.j3d.TriangleStripArray

93

Building 3D shapes

Building a TriangleFanArray

® Create lists of 3D coordinates and lighting normals for the
vertices

Point3f[] myCoords = {
new Point3f(0.0f, 0.0f, 0.0f),

Vector3f[] myNormals = {
new Vector3f(0.0f, 1.0f, 0.0f),

}

® Create a list of vertex fan lengths
int[] fanLengths ={ 5, 6 };

® Create ariangleFanArray and set vertex coordinates and
lighting normals

TriangleFanArray myFans = new TriangleFanArray(
myCoords.length,
GeometryArray. COORDINATES |
GeometryArray.NORMALS,
fanLengths);
myFans.setCoordinates(0, myCoords);
myFans.setNormals(0, myNormals);

92

Building 3D shapes

Building a LineStripArray

® Create a list of 3D coordinates for the vertices

Point3f[] myCoords = {
new Point3f(0.0f, 0.0f, 0.0f),

}
® Create a list of vertex strip lengths
int[] stripLengths ={4,5};
® Create a.ineStripArray and set the vertex coordinates

LineStripArray myLines = new LineStripArray(
myCoords.length,
GeometryArray. COORDINATES,
stripLengths);
myLines.setCoordinates(0, myCoords);
® Assemble the shape

Shape3D myShape = new Shape3D(myLines, myAppear);

® Assemble the shape

Shape3D myShape = new Shape3D(myFans, myAppear);

94

Building 3D shapes

Building a TriangleStripArray

® Create lists of 3D coordinates and lighting normals for the
vertices

Point3f[] myCoords = {
new Point3f(0.0f, 0.0f, 0.0f),

}
Vector3f[] myNormals = {
new Vector3f(0.0f, 1.0f, 0.0f),

}

® Create a list of vertex strip lengths
int[] stripLengths ={ 6,5 };

® Create ariangleStripArray and set vertex coordinates and
lighting normals

TriangleStripArray myTris = new TriangleStripArray(
myCoords.length,
GeometryArray. COORDINATES |
GeometryArray.NORMALS,
stripLengths);
myTris.setCoordinates(0, myCoords);
myTris.setNormals(0, myNormals);

95

Building 3D shapes

Building indexed geometry

® For surfaces, the same vertices are used for adjacent lines and
triangles
® Simple and strip geometry requiredundantcoordinates,
lighting normals, colors, and texture coordinates

® Indexedgeometry usemdicesalong with the usual lists of
coordinates, lighting normals, etc.
® Indices select coordinates to use from your list
® Use a coordinate multiple times, but give it only once
® Indices also used for lighting normals, colors, and texture
coordinates

® Assemble the shape

Shape3D myShape = new Shape3D(myTris, myAppear);

96

Building 3D shapes

IndexedGeometryArray class hierarchy

® IndexedGeometryArray extendsSseometryArray to build indexed

points, lines, triangles, and quadrilaterals

® IndexedGeometryStripArray eXtendSndexedGeometryArray

build indexed strips of lines and triangles

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.NodeComponent
javax.media.j3d.Geometry
javax.media.j3d.GeometryArray
javax.media.j3d.IndexedGeometryArray

javax.media.j3d.IndexedGeometryStripArray
javax.media.j3d.IndexedLineStripArray
javax.media.j3d.IndexedTriangleFanArray
javax.media.j3d.IndexedTriangleStripArra

javax.media.j3d.IndexedLineArray

javax.media.j3d.IndexedPointArray

javax.media.j3d.IndexedQuadArray

javax.media.j3d.IndexedTriangleArray

97

Building 3D shapes

IndexedGeometryArray class methods

® Generic methods andexedGeometryArray — set coordinate and
lighting normal indices

Method

98

Building 3D shapes

IndexedGeometryArray class methods

® Generic methods andexedGeometryArray also set colors and

texture coordinate indices
® Discussed in the section on shape appearance

void setCoordinatelndex(int index, int value)

Method

void setCoordinatelndices(int index, int[] value)

void setColorIndex(int index, int value)

void setNormallndex(int index, int value)

void setColorindices(int index, int[] value)

void setNormallndices(int index, int[] value)

void setTextureCoordinatelndex(int index, int value)

99

Building 3D shapes

Gearbox example

[GearBox]

void setTextureCoordinatelndices(int index, int[] value)

100

Building 3D shapes

Summary

® A 3D shape is described by:
® Geometryform or structure
® Appearancecoloration, transparency, shading

® Java 3D has multiple geometry types that all use vertices
containing:
® Coordinates:3D XYZ locations
® Normals:3D direction vectors
® Colors: red-green-blue mix colors
® Texture coordinate2D ST texture image locations

101 102

Building 3D shapes Building 3D shapes
Summary Summary
® Simple geometry types build points, lines, triangles, and ® Java 3D also provides a couple more geometry types, including:
quadrilaterals
® Automatically using vertices in sets of 1, 2, 3, or 4 ® Raster geometrydiscussed later this morning
® Strip geometry types build lines and triangles ® Text geometrydiscussed in the extended notes, but not
® Using vertices in user-defined chains during the tutorial

® Indexed geometry types build points, lines, triangles, and
quadrilaterals
® Using coordinates, lighting normals, etc. selected by indices

103 104
Controlling appearance Conroing appearance
Motivation
“E"O“"ﬁ'l“’" ig‘s‘ ® Control how Java 3D rendeggometry
xample
Appearance class hierarch: 106 ® Color
Introducing appearance attribute: 107 ° Transparency
Appearance attributes class hierarchy 108 [Shading model
Appearance class methods- 109 ® Line thickness
Using coloring attribut 110
ColoringAttributes class method 111 ® And lots more
ColoringAttributes example cod: 112
Using material attributes 113 ® All appearance control is encapsulated withinAp@arance
Using material color 114 class, and its components
Material class methods: 115
Material attributes example code: 116
Using coordinate color: 117
Using coordinate color indict 118
Coloring coordinates 119
Using transparency attribut 120
Using transparency modes; 121
TransparencyAttributes class methoss: 122
TransparencyAttributes example coek 123
Using point and line attributes 124
PointAttributes class methods 125
LineAttributes class method 126
PointAttributes example cod 127
LineAttributes example code: 128
Using polygon attributes: 129
PolygonAttributes class method: 130
PolygonAttributes example cod 131
Using rendering attributes: 132
RenderingAttributes class methods: 133
RenderingAttributes example cod 134
Appearance exampl 135
Summary 136

Summary 137

105 106

Controlling appearance Controlling appearance

Example Appearance class hierarchy

® TheAppearance class specifies how to render a shape’s geometry

Class Hierarchy
java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.NodeComponent
javax.media.j3d.Appearance

[ExAppearance]

107 108
Controlling appearance Controlling appearance
Introducing appearance attributes Appearance attributes class hierarchy
® Appearance attributes are grouped into several node components: ® The various appearance attributes extestdComponent
@ Color and transparency control
® Material Class Hierarchy
[] ColonngAttnbutes_ java.lang.Object
® TransparencyAttributes javax.media.j3d.SceneGraphObject
. javax.media.j3d.NodeComponent
® Rendering control javax.media.j3d.ColoringAttributes
® PointAttributes javax.media.j3d.LineAttributes

® LineAttributes
® PolygonAttributes
® RenderingAttributes

® Texture control (discussed later)

® Texture
® TextureAttributes
® TexCoordGeneration

javax.media.j3d.PointAttributes
javax.media.j3d.PolygonAttributes
javax.media.j3d.RenderingAttributes
javax.media.j3d.TextureAttributes
javax.media.j3d.TransparencyAttributes
javax.media.j3d.Material
javax.media.j3d.TexCoordGeneration
javax.media.j3d.Texture

109

Controlling appearance

Appearance class methods

® Methods omppearance just set which attributes to use

@ Set only the ones you need, leaving the rest at their default

values

Method

Appearance()

void setColoringAttributes(ColoringAttributes
coloringAttributes)

void setMaterial(Material material)

void setTransparencyAttributes(TransparencyAttributes
transparencyAttributes)

void setLineAttributes(LineAttributes lineAttributes)
void setPointAttributes(PointAttributes pointAttributes)
void setPolygonAttributes(PolygonAttributes
polygonAttributes)

void setRenderingAttributes(RenderingAttributes
renderingAttributes)

111

Controlling appearance

ColoringAttributes class methods

® Methods orcoloringAttributes select the color and shading
model
® The default color is white, and the default shading model
SHADE_GOURAUD

Method

ColoringAttributes()

void setColor(Color3f color)
void setShadeModel(int model)

® Shade models includsHADE_FLATandsHADE_GOURAU@lefault)

® TheFasTESTandNICEST shade models automatically select the
fastest, and highest quality models available

110

Controlling appearance

Using coloring attributes

® ColoringAttributes controls:
@ Intrinsic color (used when lighting is disabled)
® Shading model (flat or Gouraud)

® Use coloring attributes when a shagpeotshaded
® Emissive points, lines, and polygons
® Avoids expensive shading calculations

112

Controlling appearance

ColoringAttributes example code

® CreateColoringAttributes to set an intrinsic color and shading
model

ColoringAttributes myCA = new ColoringAttributes();
myCA.setColor(1.0f, 1.0f, 0.0f);
myCA.setShadeModel(ColoringAttributes. SHADE_GOURAUD

® Createappearance , set the coloring attributes, and assemble the
shape

Appearance myAppear = new Appearance();
myAppear.setColoringAttributes(myCA);
Shape3D myShape = new Shape3D(myGeom, myAppear);

113 114

Controlling appearance Controlling appearance

Using material attributes Using material colors

® Material controls: ® Diffuse colorsets the main shading color, giving a dull, matte

® Ambient, emissive, diffuse, and specular color finish (upper-left)

® Shininess factor
® Specular colomandshininess factomake a shape appear shiny

® Use materials when a shapeshaded (lower-right)
® Most scene shapes
® OverrideSColoringAttributes intrinsic color (when lighting ® Emissive colomakes a shape appear to glow (upper-right)
is enabled)

116

115
Controlling appearance Controlling appearance
Material class methods Material attributes example code
® Methods orvaterial ~ set shading colors and turn on/off lighting ® Createvaterial to set shape colors
effects
® Defaults include white diffuse and specular colors, a black Material myMat = new Material(); ,
emissive color, (0.2,0.2,0.2) ambient color, shininess of 64.0, i dvrepsestinab ol dg
and lighting enabled myMat.setEmissiveColor(0.0f, 0.0f, 0.0f);
myMat.setSpecularColor(1.0f, 1.0f, 1.0f);
Method myMat.setShininess(64.0f);
e
Material() ® Createappearance , set the material, and assemble the shape

void setAmbientColor(Color3f color)
void setEmissiveColor(Color3f color) Appearance myAppear = new Appearance();
myAppear.setMaterial(myMat);

void setDiffuseColor(Color3f color)

Shape3D mySh = Shape3D G , myA ;
void setSpecularColor(Color3f color) ape3D myShape = new Shape3D(myGeom, myAppear)
void setShininess(float shininess)
void setLightingEnable(boolean state)

118

117
Controlling appearance

Using coordinate color indices

Controlling appearance

Using coordinate colors

® For indexed geometry, you may select color indices in an

® You may also set a color for each geometry coordinate in a
GeometryArray IndexedGeometryArray
® Coordinate colors override coloring attributes or a material's
diffuse color Method
void setColorindex(int index, int value)
void setColorIndices(int index, int[] value)

Method
void setColor(int index, * color)
void setColors(int index, * color)

® Method variants accepyte , float , Color3f , Color4f , Color3b ,
andcColor4b

119 120
Controlling appearance Controlling appearance
Using transparency attributes

Coloring coordinates

® TransparencyAttributes controls:

® Coordinate colors are interpolated along lines or across polygons
® Transparency amount (0.0 = opaque, 1.0 = invisible)
® Transparency mode (screen-door, alpha-blend, none)

121

Controlling appearance

Using transparency modes

® The transparency mode selects betwssEEN_DOOBI BLENDED
transparency

SCREEN_DOOR

BLENDED

123

Controlling appearance

TransparencyAttributes example code

® CreateTransparencyAttributes to set the transparency amount
and mode

TransparencyAttributes myTA = new TransparencyAttribu 1
myTA.setTransparency(0.5f);
myTA.setTransparencyMode(TransparencyAttributes.BLEN |

® Createappearance , set the transparency attributes, and assemble
the shape

Appearance myAppear = new Appearance();
myAppear.setTransparencyAttributes(myTA);
Shape3D myShape = new Shape3D(myGeom, myAppear);

122

Controlling appearance

TransparencyAttributes class methods

® Methods orrransparencyAttributes set the transparency
@ By default, transparency is 0.0 (opaque) WitAGTEST
transparency mode

Method

TransparencyAttributes()

void setTransparency(float transparency)
void setTransparencyMode(int mode)

® Transparency modes includeREEN_DOQMLENDED NONE
FASTEST(default), andiiCEST

® TheFASTESTandNICEST transparency modes automatically select
the fastest, and highest quality modes available

124

Controlling appearance

Using point and line attributes

® PointAttributes controls:
@ Point size (in pixels)
® Point anti-aliasing

® LineAttributes controls:
® Line width (in pixels)
® Line dot/dash pattern
® Line anti-aliasing

® Methods orpointAttributes

125

Controlling appearance

PointAttributes class methods

select the way points are rendered
® By default, the point size is 1.0 and anti-aliasing is disabled

Method

126

Controlling appearance

LineAttributes class methods

® Methods onineAttributes select the way lines are rendered
@ By default, the line width is 1.0, the pattermiSTERN_SOLID
and anti-aliasing is disabled

PointAttributes()

Method

void setPointSize(float size)

LineAttributes()

void setPointAntialiasingEnable(boolean state)

void setLineWidth(float width)

® CreatepointAttributes

® Createappearance , set the point attributes, and assemble the

127

Controlling appearance

PointAttributes example code

PointAttributes myPA = new PointAttributes();
myPA.setPointSize(10.0f);
myPA .setPointAntialiasingEnable(true);

shape

Appearance myAppear = new Appearance();
myAppear.setPointAttributes(myPA);
Shape3D myShape = new Shape3D(myGeom, myAppear);

void setLinePattern(int pattern)

void setLineAntialiasingEnable(boolean state)

to set the point size and anti-aliasing

® Line patterns includeeATTERN_soLID(default),PATTERN_DASH
PATTERN_DOTandPATTERN_DASH_DOT

128

Controlling appearance

LineAttributes example code

® CreateLineAttributes to set the line width, pattern, and
anti-aliasing

LineAttributes myLA = new LineAttributes();

myLA.setLineWidth(10.0f);
myLA.setLinePattern(LineAttributes. PATTERN_SOLID);

myLA setLineAntialiasingEnable(true);

® Createappearance , set the line attributes, and assemble the shape

Appearance myAppear = new Appearance();
myAppear.setLineAttributes(myLA);
Shape3D myShape = new Shape3D(myGeom, myAppear);

129

Controlling appearance

Using polygon attributes

® PolygonAttributes controls:
@ Face culling (front, back, neither)
® Fill mode (point, line, fill)
® Z offset

131

Controlling appearance

PolygonAttributes example code

® CreaterolygonAttributes to set the culling mode and fill style

PolygonAttributes myPA = new PolygonAttributes();
myPA.setCullFace(PolygonAttributes. CULL_NONE);
myPA.setPolygonMode(PolygonAttributes.POLYGON_FILL)

® Createappearance , Set the polygon attributes, and assemble the
shape
Appearance myAppear = new Appearance();

myAppear.setPolygonAttributes(myPA);
Shape3D myShape = new Shape3D(myGeom, myAppear);

130

Controlling appearance

PolygonAttributes class methods

® Methods orpolygonAttributes select the way polygons are

rendered
® By default, back faces are culled, polygons are filled, and the

offset is 0.0

Method

PolygonAttributes()

void setCullFace(int cullface)

void setPolygonMode(int mode)

void setPolygonOffset(float offset)

® Face culling modes includeuLL_NONEgcuLL_BAck(default), and

CULL_FRONT
® Polygon modes includeoLYGON_POINTPOLYGON_LINE and

POLYGON_FILL (default)

132

Controlling appearance

Using rendering attributes

® RenderingAttributes controls:
® Depth buffer use and write enable
® Alpha buffer test function and value

133 134

Controlling appearance

RenderingAttributes example code

Controlling appearance

RenderingAttributes class methods

to set the depth and alpha modes

® Methods OrRrenderingAttributes control the way everything is ® CreaterenderingAttributes
rendered) . .)
® By default, the depth buffer is enabled and writable, and the mgfggg@;g;ﬁgg;ggm} ;(n%\gg;%ndermgAﬁnbuteS() ;
alpha test function isLwAyswith a 0.0 alpha test value myRA. setAlphaTestFunction(RenderingAttributes.NEVER
Method ® Createappearance , set the rendering attributes, and assemble the
RenderingAttributes() shape
void setDepthBufferEnable(boolean state)
- - Appearance myAppear = new Appearance();
vo?d setDepthBufferert.eEnfibIe(boolean state) myAppear setRenderingAtiributes(myRA)
void setAlphaTestFunction(int func) Shape3D myShape = new Shape3D(myGeom, myAppear);
void setAlphaTestValue(float value)

® Alpha test functions includerwAygdefault),NEVER EQUAL
NOT_EQUALLESS, LESS_OR_EQUALGREATERand
GREATER_OR_EQUAL

135 136

Controlling appearance

Summary

Controlling appearance

Appearance example

® Appearance groups together appearance attributes fiape3D

Diffuse Specular |Diffuse &

Specular
® Color and transparency control
Shaded Textured | Transparent ® ColoringAttributes
Unlit Unlit lines| Unlit points ® Non-shading color and shading model
polygons ® Material
® Ambient, diffuse, emissive, and specular colors

® Lighting enable/disable
@® GeometryArray andlndexedGeometryArray
® Color per coordinate
[ExAppearance] @ TransparencyAttributes
® Transparency amount and mode

137

Controlling appearance

Summary

® Rendering control
® PointAttributes
® Point size and anti-aliasing
@ LineAttributes
® Line width, pattern, and anti-aliasing
® PolygonAttributes
® Polygon culling and draw style
@ RenderingAttributes
® Depth and alpha buffer use

139

Grouping shapes

Motivation

® Recall that a scene graph is a hierarchy of groups
@ Shapes, lights, sounds, etc.
® Groups of groups of groups of . . .

® Java 3D has several types of groups
® Some simply group their children
@ Others provide added functionality

138

Grouping shapes

Motivation

Introducing grouping typt

Group class hierarchy

Creating group:

Group class methods-

Group example cod

Creating branch group:

BranchGroup class method:

BranchGroup example codk

Summary

140

Grouping shapes

Introducing grouping types

® Java 3D’s grouping nodes include:
® Group

® BranchGroup

® OrderedGroup

® DecalGroup

® Switch

® SharedGroup

® TransformGroup

® All groups manage a list of children nodes

® For most groups, Java 3D may render childneainy order

139
140
141
142
143
144
145
146
147
148

141 142
Grouping shapes Grouping shapes
Group class hierarchy Creating groups

® All groups share attributes inherited from threup class ® Group is the most general-purpose grouping node

Class Hierarchy ® You can add, insert, remove, and get children in a group
® Children are implicitly numbered starting with 0

® A group can have any number of children

java.lang.Object
javax.media.j3d.SceneGraphObject

javax.media.j3d.Node
javax.media.j3d.Group ® Child rendering order is up to Java 3D!

javax.media.j3d.BranchGroup ® Java 3D can sort shapes for better rendering efficiency

javax.media.j3d.OrderedGroup
javax.media.j3d.DecalGroup

javax.media.j3d.SharedGroup

javax.media.j3d.Switch

javax.media.j3d.TransformGroup

143 144
Grouping shapes Grouping shapes
Group class methods Group example code

® Methods orGroup control group content ® Build a shape
Shape3D myShape = new Shape3D(myGeom, myAppear);

Method

Group() _ i ® Add it to a group

void addChild(Node child)

void setChild(Node child, int index) Group myGroup = new Group();
void insertChild(Node child, int index) myGroup.addChild(myShape);
void removeChild(int index)

145

Grouping shapes

Creating branch groups

® BranchGroup extendSsroup and creates laranch grapha major
branch in the scene graph
® Can be attached toLacale (Or SimpleUniverse)
® Can be compiled
® Can be a child of any grouping node
® Can detach itself from its parent (if that parent has
appropriatecapabilitiesenabled)

® Adding aBranchGroup t0 aLocale makes ifive
® Once live or compiled, changes are constrained to those
enabled bycapabilities

147

Grouping shapes

BranchGroup example code

® Build a locale in a universe

Locale myLocale = new Locale(myUniverse);
® Build a shape

Shape3D myShape = new Shape3D(myGeom, myAppear);
® Add the shape to a branch group

BranchGroup myBranch = new BranchGroup();
myBranch.addChild(myShape);

® Add the branch group to the locale

myLocale.addBranchGraph(myBranch);

146

Grouping shapes

BranchGroup class methods

® |n addition toGroup's methodsBranchGroup provides
compilation and membership control

Method

BranchGroup()

void compile()

void detach()

148

Grouping shapes

Summary

® All groups can have children set, added, inserted, and removed

® All groups can have any number of children

® Group does nothing more
@ All children rendered
® Rendered in any order

® BranchGroup can compile its children for faster rendering

® All children rendered
® Rendered in any order

149

Transforming shapes

Motivation 150
Using coordinate system 151
Using coordinate system 152
Using coordinate system 153
Creating transform group: 154
TransformGroup class hierarchy 155
TransformGroup class method 156
Creating a 3D transform 157
Transform3D class hierarchy 158
Transform3D class method 159
Abiding by Transform3D restrictions 160
Resetting a transform- 161
Translating a coordinate systerm 162
TransformGroup example cod 163
Rotating a coordinate system 164
TransformGroup example cock 165
Scaling a coordinate system 166
TransformGroup example codk 167
Modifying parts of transforms: 168
Transforming vectors and points- 169
Summary 170
151

Transforming shapes

Using coordinate systems

® Recall the toy airplane . . . its parts are each built in their own
coordinate system

150

Transforming shapes

Motivation

® By default, all shapes are built within a shanestld coordinate
system

® A TransformGroup builds a new coordinate system for its
children,relativeto its parent
® Translateto change relative position
@ Rotateto change relative orientation
® Scaleto change relative size
® Use in combination

® Shapes built in the new coordinate system are relative to it
@ [f you translate the coordinate system, the shapes move too

152

Transforming shapes

Using coordinate systems

® Those parts are assembled, bringing a child shape into a parent’s
coordinate system

153

Transforming shapes

Using coordinate systems

® And so on, to build the full toy airplane

155

Transforming shapes

TransformGroup class hierarchy

® TransformGroup ~ extendssroup and builds a transformed
coordinate system for its children

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.Node
javax.media.j3d.Group
javax.media.j3d.BranchGroup
javax.media.j3d.OrderedGroup
javax.media.j3d.DecalGroup
javax.media.j3d.SharedGroup
javax.media.j3d.Switch
javax.media.j3d.TransformGroup

154

Transforming shapes

Creating transform groups

® Transforms can be arbitrarihestedo include one
TransformGroup ~ Within another

® Transforms "closer" to the geometry (deeper nesting in the scene

graph) apply first

156

Transforming shapes

TransformGroup class methods

® |n addition toGroup 's methodsyransformGroup adds a 3D

transform
® The default transform islentity, which does no translation,
rotation, or scaling

Method

TransformGroup()

void setTransform(Transform3D xform)

157

Transforming shapes

Creating a 3D transform

® A Transform3D describes the actual translation, rotation, and
scaling

® 3D transforms are internally represented as a 4x4 matrix
® You can set the matrix directly

® Most people will use helper methods to do translation,
rotation, and scaling

159

Transforming shapes

Transform3D class methods

® At the most basic level, methods Tansform3D create and set
the underlying 4x4 matrix

158

Transforming shapes

Transform3D class hierarchy

® Transform3D extendsobject

Class Hierarchy

java.lang.Object
javax.media.j3d.Transform3D

Method

Transform3D()

Transform3D(Matrix4d mat)

Transform3D(Matrix3d rot, Vector3d trans, double scale)

void set(Matrix4d mat)

void set(Matrix3d rot, Vector3d trans, double scale)

160

Transforming shapes

Abiding by Transform3D restrictions

® A 3D transform must baffine
® No perspective-like homogeneous division, such as for

hyperbolic spaces

® A 3D transform must beongruentif used in arransformGroup
above aviewPlatform
® No non-uniform scaling of the viewpoint
® ViewPlatform is discussed later in the tutorial

162

161
Transforming shapes

Transforming shapes
Resetting a transform Translating a coordinate system

® Translation moves the coordinate system and its shapes

® Setting the transform to identity does a reset
@ Zero translation in X, Y, and Z ® A directionvectorad gives X, Y, and Z distances
@ No rotation
® Scale factor of 1.0in X, Y, and Z Method
void set(Vector3d trans)
Method

void setldentity()

163 164

Transforming shapes Transforming shapes
TransformGroup example code Rotating a coordinate system

® Build a shape ® Rotation orients the coordinate system and its shapes
® Rotate about X, Y, or Z by an angle

Shape3D myShape = new Shape3D(myGeom, myAppear); ® Rotate about an arbitrary axis

® Create a 3D transform for a +1.0 translation in X
Method
Transform3D myTrans3D = new Transform3D(); void rotX(double angle)
myTrans3D.set(new Vector3d(1.0, 0.0, 0.0)); void rotY(double angle)
void rotZ(double angle)
® Create a transform group, set the transform, and add the shape Void set{ AxisAngledd axang)
void set(Matrix3d rot)

TransformGroup myGroup = new TransformGroup();
myGroup.setTransform(myTrans3D);
myGroup.addChild(myShape);

165

Transforming shapes

TransformGroup example code

® Build a shape, as before
Shape3D myShape = new Shape3D(myGeom, myAppear);
® Create a 3D transform for a Z-axis rotation by 30 degrees (0.52
radians)

Transform3D myTrans3D = new Transform3D();
myTrans3D.rotZ(0.52); // 30 degrees

® Create a transform group, set the transform, and add the shape

TransformGroup myGroup = new TransformGroup();
myGroup.setTransform(myTrans3D);
myGroup.addChild(myShape);

167

Transforming shapes

TransformGroup example code

® Build a shape, as before
Shape3D myShape = new Shape3D(myGeom, myAppear);
® Create a 3D transform for scaling by 1.5 in X, Y, and Z

Transform3D myTrans3D = new Transform3D();
myTrans3D.set(1.5);

® Create a transform group, set the transform, and add the shape

TransformGroup myGroup = new TransformGroup();
myGroup.setTransform(myTrans3D);
myGroup.addChild(myShape);

166

Transforming shapes

Scaling a coordinate system

® Scaling grows or shrinks the coordinate system and its shapes
® Use a single scale factor for uniform scaling
® Use X, Y, and Z scale factors for non-uniform scaling

Method

void set(double scale)

void setScale(Vector3d scale)

168

Transforming shapes

Modifying parts of transforms

® Modify partsof an existing transform
® |eave the rest of the transform unaffected
® Used to combine translation, rotation, and scaling

Method

void setTranslation(Vector3d trans)
void setRotation(AxisAngle4d axang)
void setRotation(Matrix3d rot)

void setEuler(Vector3d rollPitchYaw)
void setScale(double scale)

169

Transforming shapes

Transforming vectors and points

® During rendering, Java 3D processes geometry coordinates and
vectors through eachansform3b

® You can usaransform3D methods to do this processing on your
own points and vectors

Method

void transform(Point3d inout)

void transform(Point3d in, Point3d out)

void transform(Vector3d inout)

void transform(Vector3d in, Vector3d out)

171

Using special-purpose groups

Motivation 172
Group class hierarch 173
Creating ordered group: 174
Creating decal group: 175
OrderedGroup and DecalGroup class methegs: 176
DecalGroup example code 177
Creating switch group: 178
Switch class method 179
Selecting switch children 180
Switch example cod 181
Switch example cod 182
Switch example cod 183
Switch example: 184
Creating shared group: 185
Example 186
Linking to shared group: 187
SharedGroup and Link class hierarchy 188
SharedGroup class methoés: 189
Link class methods- 190
SharedGroup example cod 191
SharedGroup exampls 192
Summary 193
Summary 194

Summary 195

170

Transforming shapes

Summary

® Transform3D describes translation, rotation, and scaling

® A transform may be built from a 4x4 matrix, or by helper
methods

® TransformGroup ~ Creates a new coordinate system for its children,
transformed by @ransform3D
® All children rendered
® Rendered in any order

172

Using special-purpose groups

Motivation

® Java 3D includes several more types of groups
® Group

® BranchGroup

@® OrderedGroup

® DecalGroup

® Switch

® SharedGroup

® TransformGroup

173 174

Using special-purpose groups

Group class hierarchy

Using special-purpose groups

Creating ordered groups

® All groups share attributes inherited from thveup class ® An OrderedGroup extendsroup and guarantees children are

rendered irfirst-to-last order
® Unlike Group, BranchGroup , etc.

Class Hierarchy
java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.Node
javax.media.j3d.Group
javax.media.j3d.BranchGroup
javax.media.j3d.OrderedGroup
javax.media.j3d.DecalGroup

javax.media.j3d.SharedGroup
javax.media.j3d.Switch
javax.media.j3d.TransformGroup

175 176

Using special-purpose groups

Creating decal groups

Using special-purpose groups

OrderedGroup and DecalGroup class methods

® DecalGroup extendsorderedGroup and renders children in

® Neither class provides methods beyond the basics
first-to-last order

® Children must be co-planar Method
® All polygons must be facing the same way OrderedGroup()
® First child is the underlying surface
® The underlying surface must encompass all other children Method
i DecalGroup()
® Use for renderinglecalgeometry

® Text, texture decals (eg. airport runway markings)
® Good for avoiding Z-fighting artifacts

177

Using special-purpose groups

DecalGroup example code

® Build an underlying surface shape, and decal shapes

Shape3D underly = new Shape3D(geom0, appO0);
Shape3D decal_1 = new Shape3D(geom1, appl);
Shape3D decal_2 = new Shape3D(geom2, app2);

® Add them to a decal group, starting with the underlying surface

DecalGroup myDecals = new DecalGroup();
myDecals.addChild(underly); // First!
myDecals.addChild(decal_1);
myDecals.addChild(decal_2);

179

Using special-purpose groups

Switch class methods

® |n addition toGroup's methodsswitch enables child rendering
control

Method

Switch()

void setWhichChild(int index)
void setChildMask(BitSet mask)

® Remembertouse. ..
setCapability(Switch.ALLOW_SWITCH_WRITE);
.. . to enable the switch value to be changed while it is live or

compiled

178

Using special-purpose groups

Creating switch groups

® switch extendroup and selects zero, one, or multiple children

to render or process
® Child choice can be by number, or by a bit mask
® Only selected children are rendered (shapes) or processed
(lights, fog, backgrounds, behaviors)

® Similar to a Java "switch" statement

® Java 3D is still free to render children in any order

180

Using special-purpose groups

Selecting switch children

® Select which child to render by:
@ Passing its child index t@twhichChild()
® Or by passing in a special value:
® Render no childrercHILD_NONE
® Render all childrencHILD_ALL

® Or select a set of children with a bit mask
® A value ofcHiLD_MAskenables mask use
® Set a member of a Jaeaset for each child to render

181

Using special-purpose groups

182

Using special-purpose groups

Switch example code Switch example code

® Build children

Shape3D zero = new Shape3D(geom0, app0);
Shape3D one =new Shape3D(geom1, appl);
Shape2D two = new Shape2D(geom2, app2);

® Add them to the switch group

Switch mySwitch = new Switch();

® Select a single child of the switch group
mySwitch.setWhichChild(2);
® Select all children of the switch group

mySwitch.setWhichChild(Switch.CHILD_ALL);

mySwitch.setCapability(Switch. ALLOW_SWITCH_WRITE);

mySwitch.addChild(zero);
mySwitch.addChild(one);
mySwitch.addChild(two);

183

Using special-purpose groups

Switch example code

184

Using special-purpose groups

Switch example

® Select a set of children of the switch group

BitSet mask = new BitSet(3);
mask.set(0);
mask.set(2);

mySwitch.setWhichChild(Switch.CHILD_MASK);
mySwitch.setChildMask(mask);

[ExSwitch]

185

Using special-purpose groups

Creating shared groups

® SharedGroup extendsroup to create a group of shapes that can
be shared(used multiple times throughout a scene graph)
® |t contains shapes, like other groups
® |t is neveradded into the scene graph directly
® |t is referenced by one or marek leaf nodes

® Changes to aharedGroup affect all references to it

® Can be compiled prior to referencing it fromix node

187

Using special-purpose groups

Linking to shared groups

® |n the example, the column is irsearedGroup
® Each visible column usesak to that group

186

Using special-purpose groups

Example

——r—
o

[ExLinearFog]

188

Using special-purpose groups

SharedGroup and Link class hierarchy

® Link extendseaf to point to asharedGroup

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.Node
javax.media.j3d.Leaf
javax.media.j3d.Link

189

Using special-purpose groups

SharedGroup class methods

® |n addition toGroup's methodssharedGroup adds a compilation

method

190

Using special-purpose groups

Link class methods

® Methods onink select the shared group to link to

Method

Method

Link()

SharedGroup()

Link(SharedGroup group)

void compile()

void setSharedGroup(SharedGroup group)

191

Using special-purpose groups

SharedGroup example code

® Build one or more shapes to share
Shape3D myShape = new Shape3D(myGeom, myAppear);
® Create asharedGroup and add the shapes to it

SharedGroup myShared = new SharedGroup();
myShared.addChild(myShape);

® Compile thesharedGroup for maximum performance

myShared.compile();

® UseLink nodes to point to the group from another group

Link myLink = new Link(myShared);
TransformGroup myGroup = new TransformGroup();
myGroup.addChild(myLink);

192

Using special-purpose groups

SharedGroup example

[ExLinearFog]

193

Using special-purpose groups

Summary

® All groups can have children set, added, inserted, and removed
® All groups can have any number of children

® Group does nothing more
® All children rendered
® Rendered in any order

® BranchGroup can compile its children for faster rendering
® All children rendered
® Rendered in any order

195

Using special-purpose groups

Summary

® SharedGroup creates a group of shared shapes
@ All children rendered if the group is referenced by a live link
node
® Rendered in any order

® sharedGroup nodes ar@everplaced directly in a live scene graph

® Link points to a shared group from a live scene graph
® Any number of links to the same shared group

194

Using special-purpose groups

Summary

® OrderedGroup forces a rendering order
@ All children rendered
® Rendered in first-to-last order

® DecalGroup forces a rendering order for shapes atop an
underlying shape
® All children rendered
® Rendered in first-to-last order

® switch selects zero, one, or multiple children to render or process

® Selected children rendered
® Rendered in any order

196

Introducing texture mapping

Motivation 197
Example 198
Using texture appearance attributes 199
Using texture apy 1ce attributes: 200
Texture class hierarchy 201
Texture class methods 202
Texture2D example cod 203
Texture exampl 204
Preparing for texture mapping 205
ImageComponent class hierarchy 206
ImageComponent2D class methoss 207
Loading texture images: 208
TextureLoader example cod 209
TextureLoader exampls 210

Summary 211

197

Introducing texture mapping

Motivation

® You could model every detail of every 3D shape in your scene
@ This requires an enormous amount of modeling effort
® More shapes means more to draw and worse interactivity

® Instead, create thiBusion of detail:
® Take a photograph of the "real thing"
@ Paste that photo onto simple 3D geometry

® Increases realism without increasing the amount of geometry to
draw

199

Introducing texture mapping

Using texture appearance attributes

® Recall thatappearance is a container for multiple visual attributes
for a shape
® Color and transparency control (discussed earlier)
® Material
® ColoringAttributes
® TransparencyAttributes

® Rendering control (discussed earlier)
® PointAttributes
® LineAttributes
® PolygonAttributes
@ RenderingAttributes

® Texture control
® Texture
® TextureAttributes
® TexCoordGeneration

198

Introducing texture mapping

Example

Texture image [ExTexture]

200

Introducing texture mapping

Using texture appearance attributes

® Texture control attributes are divided among a few node
components
® Texture
® Select a texture image and control basic mapping
attributes

® TextureAttributes
® Control advanced mapping attributes

® TexCoordGeneration
® Automatically generate texture coordinates if you do not
provide your own (most people provide their own)

201

Introducing texture mapping

Texture class hierarchy

® Texture IS the base class for two node components that select the

image to use
® Texture2D : a standard 2D image
® Texture3D : a 3D volume of images

202

Introducing texture mapping

Texture class methods

® Methods orTexture andTexwre2D Select the image, and turn
texture mapping on and off

Method

Texture()

Class Hierarchy

Texture2D()

java.lang.Object
javax.media.j3d.SceneGraphObject

javax.media.j3d.NodeComponent
javax.media.j3d.Texture
javax.media.j3d.Texture2D
javax.media.j3d.Texture3D

void setimage(int level, ImageComponent2D image)

void setEnable(boolean onOff)

203

Introducing texture mapping

Texture2D example code

® Load a texture image (discussed later)

TextureLoader myLoader = new TextureLoader("brick.jp
ImageComponent2D mylmage = myLoader.getimage();

® Create aexture2D Uusing the image, and turn it on
Texture2D myTex = new Texture2D();
myTex.setimage(0, mylmage);
myTex.setEnable(true);

® Create amppearance and set the texture in it

Appearance myAppear = new Appearance();
myAppear.setTexture(myTex);

® Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

204

Introducing texture mapping

Texture example

[ExTexture]

205

Introducing texture mapping

Preparing for texture mapping

® Getting a texture requires:
® A file to load from disk or the Web

® A TextureLoader to load that file

® An ImageComponent to hold the loaded image
® Which in turn uses a standadferedimage

207

Introducing texture mapping

ImageComponent2D class methods

® Methods onmageComponent2D set the image it is holding

206

Introducing texture mapping

ImageComponent class hierarchy

® ImageComponent IS the base class for two image containers:

® ImageComponent2D holds a 2D image
® imageComponent3D holds a 3D volume of images

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject

javax.media.j3d.NodeComponent
javax.media.j3d.ImageComponent
javax.media.j3d.ImageComponent2D
javax.media.j3d.ImageComponent3D

Method

ImageComponent2D(int format, Bufferedimage image)

void set(Bufferedimage image)

208

Introducing texture mapping

Loading texture images

® TheTextureLoader utility loads an image from a file or URL,
and returns alinageComponent OF Texture

Method
TextureLoader(String path, Component observer)

ImageComponent2D getimage()
Texture getTexture()

209 210

Introducing texture mapping Introducing texture mapping

TextureLoader example code TextureLoader example

® Load a texture image

TextureLoader myLoader = new TextureLoader("brick.jp (
ImageComponent2D mylmage = myLoader.getimage();

® Create aexture2D Uusing the image, and turn it on
Texture2D myTex = new Texture2D();

myTex.setimage(0, mylmage);
myTex.setEnable(true);

® Create amppearance and set the texture in it

Appearance myAppear = new Appearance(); [ExTexture]
myAppear.setTexture(myTex);

® Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

211 212
foducing texture mapping Using texture coordinates
Summary
® A textureis an image pasted onto a shape to create the illusion of Motivation) 213
detail Using a texture coordlnatg ysterm 214
Using a texture coordinate systes 215
Specifying texture coordinates: 216
® Texture mapping is controlled by node components in a shape’s GeometryArray class methods 217
Appearance inC|UdingTextur82D IndexedGeometryArray class methods: 218
: A . f Texture coordinates example coek 219
® Enables texture mapping using an image in an Transforming texture coordinat 220
ImageComponent2D TextureAttributes class hierarch 221
TextureAttributes class methods 222
® TextureLoader gets an image from disk or the Web, returning an Texture rotation example cod 223
ImageComponent Texture rotation example 224
Texture scaling example codk 225
Texture scaling exampl 226
® ImageComponent2D holds 2D image data Texture translation example cod 227
Texture translation exampl 228
Using texture boundary modes: 229
Texture class methods: 230
Texture boundary mode example coge- 231
Texture boundary mode exampk 232
Summary 233

Summary 234

213

Using texture coordinates

Motivation

® We need a mapping from parts of a texture to parts of a shape
@ Define a "texture cookie cutter" to cut out a texture piece

® Translate, rotate, and scale the cookie cutter before cutting
out the piece

® Map the cut out texture "cookie" onto your shape

® Texture coordinatedescribe the 2D shape of that cookie cutter

215

Using texture coordinates

Using a texture coordinate system

® Textures can be visualized as in at2Rture coordinate system
® The horizontal dimension B
® The vertical dimension i§

® Animage extends from 0.0 to 1.0 in S and T, regardless of the
true size

214

Using texture coordinates

Using a texture coordinate system

® Texture images havetaie sizeand dogical size

® True size is the width and height of the image in pixels
® Must be powers of 2
® Width and height need not be the same

® Logical size is a generic treatment of image dimensions
® Alwaysa width of 1.0
® Alwaysa height of 1.0

216

Using texture coordinates

Specifying texture coordinates

® Texture coordinates define a 2D shape atop the texture image
® A "texture cookie cutter”

® There must be one ST pair for each shape coordinate
® Give texture coordinates tzometryArray , and texture
coordinate indices tddexedGeometryArray

217

Using texture coordinates

GeometryArray class methods

® Methods orGeometryArray — set texture coordinates

Method

void setTextureCoordinate(int index, * texCoord)
void setTextureCoordinates(int index, * texCoord)

® Method variants accepéat , Point2f , andpoint3f

219

Using texture coordinates

Texture coordinates example code

® Create lists of 3D coordinates, lighting normals, and texture
coordinates for the vertices

Point3f[] myCoords = {
new Point3f(0.0f, 0.0f, 0.0f),

}
Vector3f[] myNormals = {
new Vector3f(0.0f, 1.0f, 0.0f),

}
Point2f[] myTexCoords = {
new Point2f(0.0f, 0.0f),

}
® Create @uadArray and set the vertex coordinates, lighting

normals, and texture coordinates

QuadArray myQuads = new QuadArray(

myCoords.length,
GeometryArray.COORDINATES |

GeometryArray.NORMALS |
GeometryArray. TEXTURE_COORDINATE_2);

myQuads.setCoordinates(0, myCoords);

myQuads.setNormals(0, myNormals);
myQuads.setTextureCoordinates(0, myTexCoords);

® Assemble the shape
Shape3D myShape = new Shape3D(myQuads, myAppear);

® Methods onndexedGeometryArray

218

Using texture coordinates

ndexedGeometryArray class methods

set texture coordinate indices

Method

void setTextureCoordinatelndex(int index, int value)

void setTextureCoordinatelndices(int index, int[] value)

220

Using texture coordinates

Transforming texture coordinates

® The "texture cookie cutter" can be transformed to translate, rotate,
and scale it before cutting out a piece of texture

® Scaling is the most important
® Scale up and coordinatesap around image boundaries
® Similar to imagining an infinite amount of texture cookie

dough

221

Using texture coordinates

TextureAttributes class hierarchy

® TextureAttributes control how a texture is mapped, including
use of a texture coordinates transform

Class Hierarchy
java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.NodeComponent
javax.media.j3d.TextureAttributes

223

Using texture coordinates

Texture rotation example code

® CreateTextureAttributes
TextureAttributes myTA = new TextureAttributes();
® Create a rotation transform (Z sticks out of the ST plane)

Transform3D myTrans = new Transform3D();
myTrans.rotZ(Math.PI1/4.0); // 45 degrees
myTA.setTextureTransform(myTrans);

® Set the texture attributes on &pearance

Appearance myAppear = new Appearance();
myAppear.setTextureAttributes(myTA);

® Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

222

Using texture coordinates

TextureAttributes class methods

® Methods orTextureAttributes set arransform3D to transform
texture coordinates

Method

TextureAttributes()

void setTextureTransform(Transform3D trans)

224

Using texture coordinates

Texture rotation example

No rotation Rotate 45 degrees

225

Using texture coordinates

Texture scaling example code

® CreateTextureAttributes
TextureAttributes myTA = new TextureAttributes();
® Create a scaling transform

Transform3D myTrans = new Transform3D();
myTrans.set(4.0);
myTA.setTextureTransform(myTrans);

® Set the texture attributes on &pearance

Appearance myAppear = new Appearance();
myAppear.setTextureAttributes(myTA);

® Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

227

Using texture coordinates

Texture translation example code

® CreateTextureAttributes
TextureAttributes myTA = new TextureAttributes();
® Create a translation transform

Transform3D myTrans = new Transform3D();
myTrans.set(new Vector3f(0.25f, 0.0f, 0.0f));
myTA.setTextureTransform(myTrans);

® Set the texture attributes on &pearance

Appearance myAppear = new Appearance();
myAppear.setTextureAttributes(myTA);

® Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

226

Using texture coordinates

Texture scaling example

Scale by 1.0 Scale by 4.0

228

Using texture coordinates

Texture translation example

No translation Translate by 0.25in S,
0.0inT

229 230

Using texture coordinates Using texture coordinates

Using texture boundary modes Texture class methods
® But. .. when texture coordinates extend past the edge of the ® Methods orrexture selectwrArOr cLAMPboundary modes in S
image they can: and T
® Wrapto create a repeating pattern (as before) ® WRAAS the default in both Sand T

® Or Clampto prevent repeatition

Method
void setBoundaryModeS(int mode)
void setBoundaryModeT(int mode)

231 232

Using texture coordinates Using texture coordinates

Texture boundary mode example code Texture boundary mode example

® Load a texture image

TextureLoader myLoader = new TextureLoader("brick.jp (
ImageComponent2D mylmage = myLoader.getimage();

® Create aexture2D using the image, and turn it on

Texture2D myTex = new Texture2D();
myTex.setimage(0, mylmage); Wrap Clamp
myTex.setEnable(true);

® Set the boundary modes and color

myTex.setBoundaryModeS(Texture. WRAP);
myTex.setBoundaryModeT(Texture. WRAP);

e Create an Appearance and set the texture in it

Appearance myAppear = new Appearance();
myAppear.setTexture(myTex);

o Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

233

Using texture coordinates

Summary

® Textures are in a logical coordinate system with S (horizontal)

and T (vertical) directions

® Regardless of true size, all textures have logical width and height

of 1.0

® Texture coordinatedescribe the shape of a texture cookie cutter

® Provide texture coordinates ¢@ometryArray
® Provide texture coordinate indicesii@exedGeometryArray

235

Using raster geometry

Motivation
Example
Raster class hierarchy
Building raster geometry
Raster class methods:
Raster class methods:
Raster example cod
Raster Exampl
Summary

236
237
238
239
240
241

243
244

234

Using texture coordinates

Summary

® A Texture transforntranslates, rotates, and scales texture
coordinates

® When texture coordinates extend past the image boundary they
canwrap or beclamped
® When clamped, the rest of the texture cookie is setto a
boundary color

® Boundary modes are setTiexture

@ Texture transforms are setiiextureAttributes

236

Using raster geometry

Motivation

® We would like to position a 2D image in the 3D scene
® Anchor it to a 3D point in model coordinates
® Make its size independent of the distance from the user to the
shape

® Useful for annotation text, sprites, etc.

® We call thisraster geometry

238

Using raster geometry

Raster class hierarchy

237

Using raster geometry

Example

® Raster extendSseometry

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject

javax.media.j3d.NodeComponent
javax.media.j3d.Geometry
javax.media.j3d.Raster

[ExRaster]

240

Using raster geometry

Raster class methods

239

Using raster geometry

Building raster geometry

® Methods orraster set the image data and type

® Raster describes geometry forsaape3D, including

® A 3D anchor position Method
® Placement of upper-left corner of image Raster()
void setimage(ImageComponent2D image)
void setDepthComponent(DepthComponent depth)
void setType(int flag)

® Animage and its type
® Color image, depth, or both
® A region of the image to copy to the screen ® Raster image types includeasTer_coLokdefault),
RASTER_DEPTHandRASTER_COLOR_DEPTH

241

Using raster geometry

Raster class methods

® Methods orraster also set the anchor position and image region
to use

Method

void setPosition(Point3f pos)
void setSize(int width, int height)
void setOffset(int X, inty)

void readRaster(Raster raster)

® Reading from a&aster only may be done in immediate mode

243

Using raster geometry

Raster Example

[ExRaster]

242

Using raster geometry

Raster example code

® Load a texture image

TextureLoader myLoader = new TextureLoader("brick.jp (
ImageComponent2D mylmage = myLoader.getimage();

® Create &aster

Raster myRaster = new Raster();
myRaster.setPosition(new Point3f(1.0f, 0.0f, 0.0f)
myRaster.setType(Raster.RASTER_COLOR);
myRaster.setimage(mylmage);
myRaster.setOffset(0, 0);

myRaster.setSize(256, 256);

® Assemble the shape

Shape3D myShape = new Shape3D(myRaster, myAppear);

244

Using raster geometry

Summary

® Raster creates an image sprite by placing a 2D image at a screen
position controlled by a 3D anchor position

245 246

Lighting the environment Haning the envionment
Motivation
“E/':atms" 523 ® Previous examples have used a default light attached to the
Light class hierarchy 248 viewer's head
Light class methods: 249
Creating ambient lights 250 ® Java 3D provides four types of lights to illuminate your scene:
AmbientLight example code- 251 ® Ambient
Creating directional light: 252 f :
DirectionalLight example cod 253 ® Dlr'F)CtIOI’]a|
Creating point lights: 254 ® Point
Using point light attenuation 255 ® Spot
PointLight example code: 256
Creating spot lights 257
SpotLight class method: 258
SpotLight example cod: 259
Using light influencing bound: 260
Creating influencing bounds 261
Anchoring influencing bounds 262
Light class methods- 263
Influencing bounds example cod 264
Influencing bounds exampl 265
Scoping light: 266
Light class method 267
Scoping example cod 268
Scoping Exampl! 269
Summary 270
Summary 271
247 248
Lighting the environment Lighting the environment
Example Light class hierarchy

® All lights share attributes inherited frormght

Class Hierarchy
java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.Node
javax.media.j3d.Leaf
javax.media.j3d.Light
javax.media.j3d.AmbientLight
javax.media.j3d.DirectionalLight
javax.media.j3d.PointLight
javax.media.j3d.SpotLight

[ExHenge]

250

249
Lighting the environment Lighting the environment
Light class methods Creating ambient lights

® Methods onight control attributes common to all light types: ® AmbientLight extends.ight

® An on/off enable state

® A color
® A bounding volume and scope controlling the range of shapes

® Light rays aim in all directions, flooding
an environment and illuminating shapes

they illuminate evenly
[ExAmbientLight]

Method

void setEnable(boolean OnOff) Method

void setColor(Color3f color) AmbientLight()

251 252
Lighting the environment Lighting the environment
AmbientLight example code Creating directional lights

® Create a light @ DirectionalLight extends.ight

® Light rays are parallel and aim in

AmbientLight myLight = new AmbientLight();
one direction

myLight.setEnable(true);
myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f));

® Set its influencing bounds [ExDirectionalLight]

BoundingSphere myBounds = new BoundingSphere(
new Point3d(), 1000.0); Method
myLight.setinfluencingBounds(myBounds); DirectionalLight()
void setDirection(Vector3f dir)

® The default aim direction is (0.0, 0.0, -1.0)

253 254

Lighting the environment Lighting the environment

DirectionalLight example code Creating point lights

® Create a light ® PointLight extendg.ight

DirectionalLight myLight = new DirectionalLight(); ® Light rays emit radially from a point in all

myLight.setEnable(true); . .
myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f)); directions
myLight.setDirection(new Vector3f(1.0f, 0.0f, 0.0f)

[ExPointLight]

® Set its influencing bounds

BoundingSphere myBounds = new BoundingSphere(Method
new Point3d(), 1000.0); PointLight()
myLight.setinfluencingBounds(myBounds); void setPosition(Point3f pos)
255 256
Lighting the environment Lighting the environment
Using point light attenuation PointLight example code
® Point light rays arattenuated ® Create a light

@ As distance increases, light brightness decreases
PointLight myLight = new PointLight();

. - Light.setEnable(true);
® Attenuation is controlled by three coefficients: m%_:ght_:;cgi)r(er(]ewec)o|orgf(1.0f, 1.0f, 1.0f));

® constantlinear, andquadratic myLight.setPosition(new Point3f(0.0f, 1.0f, 0.0f)
myLight.setAttenuation(new Point3f(1.0f, 0.0f, 0.0f

i lightintensity ® Set its influencing bounds
brightness = - - —
constant + linear*distance + quadratic*distahce BoundingSphere myBounds = new BoundingSphere(
new Point3d(), 1000.0);
myLight.setinfluencingBounds(myBounds);
Method yLig g (my)

void setAttenuation(Point3f atten)

257 258

Lighting the environment

SpotLight class methods

Lighting the environment

Creating spot lights

® Methods orspotLight also set the cone spread angle and

® SpotLight extendointLight
concentration

® Light rays emit radially from a point,

within a cone Method
® Vary thespread angleéo widen, or void setSpreadAngle(float angle)
[ExspotLight] narrow the cone void setConcentration(float concen)
® Vary theconcentratiorto focus the
spot light ® Spread angle varies from 0.0 to PI1/2.0 radians
® A value of Pl radians makes the light@ntLight
® The default is Pl
Method
SpotLight() ® Concentrations vary from 0.0 (unfocused) to 128.0 (focused)
void setDirection(Vectoraf dir) ® The defaultis 0.0

® The default aim direction is (0.0, 0.0, -1.0)

259 260
Lighting the environment Lighting the environment
SpotLight example code Using light influencing bounds

® A light's illumination isboundedo a region of influence

® Create a light
® Shapes within the region may be lit by the light

SpotLight myLight = new SpotLight();
myLight.setEnable(true); . P
myLight.setColor(new Color3f(1.0f, 1.0f, 1.0f)); ® Light bounding: o
) ® Enables controlled lighting in large scenes

myLight.setPosition(new Point3f(0.0f, 1.0f, 0.0f))
myLight.setAttenuation(new Point3f(1.0f, 0.0f, 0.0f ® Avoids over-lighting a scene when using multiple lights

myLight.setDirection(new Vector3f(1.0f, 0.0f, 0.0f) h . ! .
myLight.setSpreadAngle(0.785f); // 45 degrees ® Saves lighting computation time
myLight.setConcentration(3.0f); // Unfocused

® Set its influencing bounds

BoundingSphere myBounds = new BoundingSphere(
new Point3d(), 1000.0);
myLight.setinfluencingBounds(myBounds);

261

Lighting the environment

Creating influencing bounds

® A light region of influence is a bounded volume:
® Sphere, box, polytope, or combination ussagnds
® To make a global light, use a huge bounding sphere

® By default, lights have no influencing bounds and illuminate

nothing!
® Common error:forgetting to set influencing bounds

263

Lighting the environment

Light class methods

® Methods onight set the influencing bounds

Method

void setInfluencingBounds(Bounds bounds)

void setInfluencingBoundingLeaf(BoundingLeaf leaf)

262

Lighting the environment

Anchoring influencing bounds

® A light bounding volume can be relative to:
® The light's coordinate system
® \/olume centered on light
® As light moves, so does volume

® A Bounding leafs coordinate system
® Volume centered on a leaf node elsewhere in scene graph

® As that leaf node moves, so does volume
@ If light moves, volume does not

264

Lighting the environment

Influencing bounds example code

® Set bounds relative to the light's coordinate system

PointLight myLight = new PointLight();
myLight.setinfluencingBounds(myBounds);

® Or relative to a bounding leaf's coordinate system

TransformGroup myGroup = new TransformGroup();
BoundingLeaf myLeaf = new BoundingLeaf(myBounds);
myGroup.addChild(myLeaf);

blointLight myLight = new PointLight();
myLight.setinfluencingBoundingLeaf(myLeaf);

266

Lighting the environment

Scoping lights

265

Lighting the environment

Influencing bounds example

® A light's illumination may bescopedto one or morgroupsof

shapes
® Shapes within the influencing bouraisd within those

groups are lit

® By default, lights haveniversal scopand illuminate everything
within their influencing bounds

Small bounds

Large bounds
[ExtLightBounds]

268

267
Lighting the environment

Scoping example code

Lighting the environment

Light class methods

® Build a group of shapes

® Methods onight control the scope list
Method TransformGroup myLightable = new TransformGroup();
h — Shape3D myShape = new Shape3D(myGeom, myAppear);
void setScope(Group group, int index) myLightable.addChild(myShape);
void addScope(Group group))))
void insertScope(Group group, int index) ® Create a light and add the group to its scope list
DirectionalLight myLight = new DirectionalLight();

void removeScope(int index)
myLight.addScope(myLightable);

269

Lighting the environment

Scoping Example

[ExLightScope]

271

Lighting the environment

Summary

® Lights illuminate shapes within their influencing bounds
@ Default isno influenceso nothing is illuminated!

® andwithin groups on the light's scope list
® Default isuniversal scopeso everything is illuminated (if
within influencing bounds)

270

Lighting the environment

Summary

® Java 3D provides four types of lights:
® AmbientLight
@ DirectionalLight
@ PointLight
® SpotlLight

® All lights have a color, can be turned on/off, and have influencing
bounds and a scope list

® Directional lights have an aim direction
® Point lights have a position and attenuation

® Spot lights have an aim direction, position, attenuation, and a
cone spread angle and concentration

272

Building a virtual universe

Motivation 273
Looking at the content branch 274
Terminology 275
Scene graph superstructure class hierarehy 276
VirtualUniverse class methods 277
Locale class method: 278
Locale class method: 279
Building a universe example cod 280
Building a universe example cod 281

Summary 282

273

Building a virtual universe

Motivation

® We need to assemble large chunks of content
® Build components separately

® Assemble them into artual universe

® We need scene graghperstructure

275

Building a virtual universe

Terminology

® Recall some terminology we introduced at the start of this tutorial

® Virtual universea collection of scene graphs
® Typically one universe per application

® | ocale a position in the universe at which to put scene graphs
® Typically one locale per universe

® Branch grapha scene graph
® Typically several branch graphs per locale
® Content and view branchs are both branch graphs

274

Building a virtual universe

Looking at the content branch

® The virtual universe superstructure includes the upper portion of
the scene graph

276

Building a virtual universe

Scene graph superstructure class hierarchy

® Universes and locales are built using superstructure classes

Class Hierarchy

java.lang.Object
javax.media.j3d.VirtualUniverse
javax.media.j3d.Locale
javax.media.j3d.Node
javax.media.j3d.Group
javax.media.j3d.BranchGroup

277

Building a virtual universe

VirtualUniverse class methods

® Methods onvirtualUniverse access its list afocale s

278

Building a virtual universe

Locale class methods

® Methods onocale position it within avirtualUniverse

Method

Method

VirtualUniverse()

Locale(VirtualUniverse universe)

Enumeration getAllLocales()

Locale(VirtualUniverse universe, HiResCoord hiRes)

int numLocales()

void setHiRes(HiResCoord hiRes)

279

Building a virtual universe

Locale class methods

® Locale methods also manage a list of branch graphs

Method

void addBranchGraph(BranchGroup branchGroup)

void removeBranchGraph(BranchGroup branchGroup)

void replaceBranchGraph(BranchGroup oldGroup, BranchGroup
newGroup)

int numBranchGraphs()

Enumeration getAllBranchGraphs()

280

Building a virtual universe

Building a universe example code

® Build a universe
VirtualUniverse myUniverse = new VirtualUniverse();
® Build a locale
Locale myLocale = new Locale(myUniverse);

® Build a branch group

BranchGroup myBranch = new BranchGroup();

281

Building a virtual universe

Building a universe example code

® Build nodes and groups of nodes

Shape3D myShape = new Shape3D(myGeom, myAppear);

Group myGroup = new Group();
myGroup.addChild(myShape);

® Add them to the branch group

myBranch.addChild(myGroup);

® Add the branch graph to the locale

myLocale.addBranchGraph(myBranch);

283

Introducing the view model

Motivation 284
Looking at the view branch——— 285
Coexisting in the physical and virtual worlds- 286
Understanding constraints and policies— 287
Understanding view policies——— 288
Understanding room-mounted displays—— 289
Understanding room-mounted displays— 290
Understanding room-mounted displays— 291
Understanding room-mounted displays— 292
Understanding room-mounted displays— 293
Understanding head-mounted displays—— 294
Understanding head-mounted displays— 295
Understanding head-mounted displays— 296
Understanding head-mounted displays— 297
Understanding head-mounted displays— 298
Understanding physical to virtual mappings— 299
Understanding physical to virtual mapping300
Understanding physical to virtual mapping301
Understanding physical to virtual mapping302
Understanding physical to virtual mapping803
Putting it all together————— 304
Putting it all together———— 305
Using view attach policies——————— 306
Using the head view attach policy—— 307
Using the feet view attach policy——— 308
Using the screen view attach poliey—— 309
Using the Java 3D viewing modet———— 310
Using the Java 3D viewing mode}——— 311
Looking at view model classes————— 312
Looking at view model classes————— 313
Looking at view model classes—— 314
Looking at what is where——— 315
Looking at what is where——— 316
Looking at what is where——— 317

Looking at what is where— 318
Looking at what is where— 319

Summary

320

282

Building a virtual universe

Summary

® A VirtualUniverse holds everything within one or morecale s
® A Locale positions in a universe one or m@rénchGroup S

® A BranchGroup holds a scene graph, often with separate branchs
for content and viewing information

284

Introducing the view model

Motivation

® We need control over the user’s virtual position and orientation
® Navigate their viewpoint using the mouse, or any other input
device
® Or move the viewpoint automatically in a guided tour
® We call such a user viewpoinvagw platform
® We also need a careful abstraction from hardware gadgetry
® Support different display configurations
® Stereo, HMDs, multi-screen portals

® Support head tracking

285

Introducing the view model

Looking at the view branch

® Viewing controls are typically placed in a parailew branchof
the scene graph

287

Introducing the view model

Understanding constraints and policies

® A chain of relationships control this mapping between worlds
@ Eye locations relative to the user’s head
® Head location relative to a head tracker
® Head tracker relative to the tracker base
® Tracker base relative to an image plate (display)
® ... and so on, with variations

® A constraint systerdefines these relationships
® For a given environment and usage, some relationships are
constants, while others vary

® Java 3Dpoliciesselect among standard constraint systems and
control how they adapt to changes

286

Introducing the view model

Coexisting in the physical and virtual worlds

® Shapes, branch groups, locales, and the virtual universe define the
virtual world

® A userco-existan this virtual world and in the physical world
® The user has a position and orientation invirteial world

® The user, and their display, have positions and orientations in
the physical world

® The Java 3D view model handles mapping between virtual and
physical worlds

288

Introducing the view model

Understanding view policies

® Theview policyselects one of two constraint systems

® Room-mounted displays
® Displays whose locations are fixed
® CRTs, video projectors, multi-screen walls, portals

® Head-mounted displays
® Displays whose locations change as the user moves
® HMDs

289

Introducing the view model

Understanding room-mounted displays

® |n aroom-mounted displayhe user looks at a display with a
fixed location relative to the physical world

Desktop CRT Video wall Portal

291

Introducing the view model

Understanding room-mounted displays

® The constraint system uses the eye location relative to the image
plate to compute a correct view frustum
® When using head tracking, the eyepoint is computed
automatically
® When not using head tracking, the eyepoint may be set
manually

290

Introducing the view model

Understanding room-mounted displays

® Physical world components include:
® Head- the user!
® Eye- a "center eye" on the user’s head
® Image plate the physical display
® Head tracker the tracked point on a user’s head
® Tracker base the tracking system’s emitter or reference
point

292

Introducing the view model

Understanding room-mounted displays

® To map from eye to image plate, the constraint system uses a
chain of coordinate system mappings

Head dasinms Trarue: basa

Irsage pale

293

Introducing the view model

Understanding room-mounted displays

® Configuration constants: (yellow)
® Physical body
® Eye-to-head
® Head-to-head tracker
® Screen
® Tracker base-to-image plate

® Vary during use: (red)
® Head tracker-to-tracker base

295

Introducing the view model

Understanding head-mounted displays

® Physical world components include:
® Head- the user!
® Eyes- left and right eyes on the user’s head
® Image plates a physical display per eye
® Head tracker the tracked point on a user’s head
® Tracker base the tracking system’s emitter or reference
point

294

Introducing the view model

Understanding head-mounted displays

® In ahead-mounted displagach eye looks at its own display with
a fixed location relative to the user’s head

296

Introducing the view model

Understanding head-mounted displays

® The constraint system uses the left and right eye locations relative
to the left and right image plates to compute correct view
frustums

297 298

Introducing the view model Introducing the view model
Understanding head-mounted displays Understanding head-mounted displays
® To map from left and right eyes to their image plates, the ® Configuration constants: (yellow)

constraint system uses a chain of coordinate system mappings ® Physical body
® |eft/Right eye-to-head mappin
® Head-to-head tracker

® Screen
® Head tracker-to-left/right imag
plate
Lef o
= iegy phei
R o che ® Vary during use: (red)
b Sl T ® Head tracker-to-tracker base
299 300
Introducing the view model Introducing the view model
Understanding physical to virtual mappings Understanding physical to virtual mappings
® Recall that the useo-existsan the virtual and physical worlds ® For example, in a virtual world imagine the view platform is a
® The user has a physical position and orientation magic carpet
® The user also has a virtual position and orientation ® The user can walk about on the carpet

® The carpet flys about under application control
® Room- and head-mounted display view policies handle mapping
from the user’s physical body to a tracker base and image plates ® Define the view platform origin at "ground level", at carpet
center
® To map from this physical world to the virtual world, we add to
the constraint chain:
® Tracker base to coexistance
® Coexistance to view platform
® View platform to locale
® Locale to virtual universe

301

Introducing the view model

Understanding physical to virtual mappings

® |n the physical world, imagine the user is standing in a portal
® Images of the virtual world are rendered on three sides
® The user’s position is tracked within the portal

® Define the portal origin at ground level, at the portal center

303

Introducing the view model

Understanding physical to virtual mappings

® On the virtual side, the scene graph establishes:
® Mappings from view platform center, to locale, to virtual
universe

® The view platform’s centaro-existswith the center of the
portal (or wherever the coexistence transform selects)

® Together, these physical and virtual mappings establish
coexistence
® Movement in the physical world gives proper corresponding
movement in the virtual world

302

Introducing the view model

Understanding physical to virtual mappings

® Physical device configurations and a room-mounted view policy
establish:
® Mappings from eye to head, to head tracker, to tracker base,
to image plate (portal screen)

® A tracker base to coexistence transfamaps from the
tracker base to the portal center
® Or whatever reference point you prefer

® As the user moves about, their location is computable relative to
this coexistence frame of reference - the portal center

304

Introducing the view model

Putting it all together

® The room-mounted display view policy:

305 306

Introducing the view model Introducing the view model
Putting it all together Using view attach policies
® The head-mounted display view policy: ® Theview attach policyestablishes how the view platform origin
is placed relative to the user (i.e., how iaigachedto the user’'s

view)
® Nominal head

® Nominal feet

® Nominal screen

307 308
Introducing the view model Introducing the view model
Using the head view attach policy Using the feet view attach policy
® Nominal headplaces the view platform origin at the user's head ® Nominal feeplaces the view platform origin at the user’s feet, at
® Convenient for arrangement of content around the user’s head the ground plane
for a heads-up display ® Convenient for walk-throughs where the user’s feet should

® Most like "older" view models touch the virtual ground

309

Introducing the view model

Using the screen view attach policy

® Nominal screemplaces the view platform origin at the screen
center
® Enables the user to view objects from an optimal viewpoint

311

Introducing the view model

Using the Java 3D viewing model

® The physical world policies and parameters are set up when the
system is installed and initially configured
® Application programmers rarely need to deal with these

® The virtual world policies and parameters are set up when the
application initializes

® The constraint system then maintains proper coexistence
relationships automatically as the user moves

310

Introducing the view model

Using the Java 3D viewing model

® So, theview models composed of:
@ A view policyto choose a room- or head-mounted constraint
system

® A set of physical body, physical environment, and screen
configuration parameters

® A set of policies to guide the chosen constraint system
@ Including the view attach policy

312

Introducing the view model

Looking at view model classes

® |et's look at which classes are involved in the view model
® A VirtualUniverse defines the universe coordinate system
® A Locale places a scene graph branch within that universe

® A ViewPlatform (and arransform3D above it) defines a view
point within that locale
® |t defines a frame of reference for the user’s position and
orientation in the virtual world
@ Think of it as a magic carpet
® There can be manyewpPlatform s in a scene graph

313

Introducing the view model

Looking at view model classes

® A view is the virtual user standing orviawPlatform
® There can be manyew s on the sameiewPlatform

® A physicalBody ~describes the user’s dimensions for use by a
View
® There is always onehysicalBody for aview

® A PhysicalEnvironment describes the user’s environment for use
by aview
® There is always onehysicalEnvironment for aview

315

Introducing the view model

Looking at what is where

® And now, the view model policies and parameters are found in
these classes

® The virtual user’s location and orientation is controlled by a
ViewPlatform

® A Transform3D above theviewpPlatorm moves the platform
about

® Theview attach policyligns the platform origin with the
user’s screen, head, or feet

314

Introducing the view model

Looking at view model classes

® A canvas3D selects a screen area on which to draseva
® Everyview has one or moreanvasaDs

® A screen3D describes the physical display device (image plate)
drawn onto by &anvas3D
® A Canvas3D always has &creen3d to draw onto

316

Introducing the view model

Looking at what is where

® Viewing policies and parameters are controlled biea

® The projection policyselects perspective or parallel
projection

® Theview policyselects the room- or head-mounted display
constraint systems

® Variouswindow policiescontrol how the view frustum adapts
to viewing parameter changes

317

Introducing the view model

Looking at what is where

® The user’s physical dimensions are described iyscalBody

® Parameters set the left and right eye and ear positions

® Parameters also set the nominal head height from the ground,

and the nominal eye offset from the nominal screen

® A transform describes the head to head tracker relationship

319

Introducing the view model

Looking at what is where

® The drawing area is selected bgaavas3D

® The physical screen device is described byr&n3D (image

plate)

® A transform describes the tracker base to image plate
relationship

® Parameters set the display’s physical width and height (in
meters)

318

Introducing the view model

Looking at what is where

® The user’s display, input sensors, and sound environment are
described by ahysicalEnvironment

@ A transform describes the coexistence to tracker base
relationship

@ A set of abstract input sensors provide access to trackers

® An audio device enables sound playback

320

Introducing the view model

Summary

® Virtual world:
® viewPlatform controls the user’s virtual position and
orientation
® Vview sets the view policy, etc.

® Physical world:
@ PhysicalBody describes the user
@ PhysicalEnvironment describes the user’s environment
® canvas3D selects a region to draw into
® screen3D describes the screen device

321 322

Viewing the scene

Viewing the scene Moftivation

Motivation ———————————— 322 Using multiple views ———————— 356 ® Now we can look deeper at the view model classes and methods
Looking at the view branch———— 323 Immersive workbench example code— 357

Creating a ViewPlatform———— 324 Immersive workbench example cod858 .
Using ViewPlatforms——— 325 Summary—— 359 ® Everything has reasonable default values
Setting the activation radius—— 326
Using view attach policies——— 327 ® For complex display systems, a system manager’s configuration

yenplatiom class methods—— 3¢ establishes the default values
iewPlatform example code—— 329

Using views—— 330 ® Thereafter, applications need not be aware of the
Setting the view projection policy- 331 configuration’s details
Setting the view policy—————— 332
Setting physical data for a view— 333

Using a Canvas3D——— 334
Canvas3D class methods——— 335
Canvas3D class methods——— 336

Using a Screen3D———— 337
Using a Screen3D——— 338

Describing the user’s physical body— 339
Describing the user’s physical bodp40

Describing the physical environment— 341
View example code———— 342

Using view window policies————— 343
Using view window policies—— 344
Using view window policies——— 345
Using view window policies: 346
View class methods——— 347
View class methods——— 348

Setting the view screen scale poliey— 349
Setting the view monoscopic policy350

Using a desktop configuratior——— 351

Using an HMD configuration——— 352

Using a portal configuratior————— 353

Using a wall configuration———— 354

Using multiple view platforms———— 355

323 324

Viewing the scene Viewing the scene

Looking at the view branch Creating a ViewPlatform

® Let's start with theviewPlatform , and work through the viewing ® A viewPlatform defines a view point within the scene
objects

® |t defines a frame of reference for the user’s position and
orientation in the virtual world

® Think of it as a magic carpet on which the user stands/sits

® There can be manyewpPlatform s in a scene graph

325 326

Viewing the scene

Setting the activation radius

Viewing the scene

Using ViewPlatforms

® A viewPlatiorm is a leaf in the scene graph ® Eachviewplatorm has aractivation radiusthat defines a region

@ [t can be transformed byTaansformGroup ~ parent of interest

® Animation behaviors, sounds, backgrounds, fog, and other

® User interface and animation features can modify that
nodes have bounding volumes

TransformGroup ~ to move the platform (fly the magic carpet)

® When the activation radius intersects those bounds, those
nodes are active
® Backgrounds or fog are activated
® Sounds and behaviors are scheduled

327 328

Viewing the scene

ViewPlatform class methods

Viewing the scene

Using view attach policies

® Eachviewplatorm has aview attach policyhat determines how ® Methods onviewPlatform set the activation radius and attach

the user'sview is placed relative to th@ewPlatform 's origin policy

Method

ViewPlatform()

void setActivationRadius(float radius)
void setViewAttachPolicy(int policy)

_NOMINAL HEAD NOMINAL_FEET NOMINAL_SCREEN ® Policy values includeyoMINAL_SCREENNOMINAL_HEAI{default),
origin at user's headrigin at user’s feet origin at screen andNOMINAL FEET
(default) center -

329 330

Viewing the scene Viewing the scene

ViewPlatform example code Using views
® Create aransformGroup to steer the platform ® A view represents the user owiawPlatform
® |t manages the rendering of the scene into a screen region
TransformGroup viewGroup = new TransformGroup(); from the user's Viewpoint
viewGroup.setCapability(TransformGroup.ALLOW_TRANSFORM_ v ® That screen region iScanvassD (extends AWTCanvas)

® Add aviewPlatform . .
® Typically, add acanvas3D to a Javarame, then point aview at

ViewPlatform myPlatform = new ViewPlatform(); that canvas
myPlatform.setActivationRadius(1000.0f);
myPlatform.setViewAttachPolicy(View.NOMINAL_HEAD);
viewGroup.addChild(myPlatform); Method
. View()
® Add them to @ranchGroup view branch void attachViewPlatform(ViewPlatform vp)

void setCanvas3D(Canvas3D c3d)

BranchGroup viewBranch = new BranchGroup();
viewBranch.addChild(viewGroup);
myLocale.addBranchGraph(viewBranch);

331 332

Viewing the scene Viewing the scene

Setting the view projection policy Setting the view policy
® Rendering through @ew can US®ERSPECTIVE_PROJECTION ® A view's view policyselects the constraint system to use for the
(default) OrPARALLEL_PROJECTION display configuration
® SCREEN_VIEwWroom-mounted displays (default)
® You can also control front and back clip planes ® HwvD_VIEWhead-mounted displays
Method Method
void setViewPolicy(int policy)

void setProjectionPolicy(int policy)
void setFrontDistance(double distance)
void setBackDistance(double distance)

Desktop CRT Video wall

Portal HMD

333

Viewing the scene

Setting physical data for a view

® view methods select the physical body and environment to use
with the view policy

Method
void setPhysicalBody(PhysicalBody pb)
void setPhysicalEnvironment(PhysicalEnvironment pe)

335

Viewing the scene

Canvas3D class methods

® Methods orcanvas3d configure the use of the underlying
Screen3D , including support for stereo

Method

Canvas3D(Configuration gc)

boolean getStereoAvailable()

void setStereoEnable(boolean flag)

boolean getDoubleBufferAvailable()

void setDoubleBufferEnable(boolean flag)

334

Viewing the scene

Using a Canvas3D

® canvas3D extends the AWTanvas class to support
® Stereo
® Double buffering
® A Screen3D
® A canvas3D describes the region ofsareen3p in which to draw a

View

® A screen3D describes the physical screen device (image plate)

336

Viewing the scene

Canvas3D class methods

® When not using head tracking, methodscativas3p also
manually set the left and right eye locations relative to the image

plate

Method
void setLeftManualEyelnimagePlate(Point3d position)
void setRightManualEyelnimagePlate(Point3d position)

338

337
Viewing the scene

Viewing the scene
Using a Screen3D Using a Screen3D

® Methods orscreen3D also set transforms to place the tracker base

® Methods orscreen3d describe the physical device and the tracker
base to image plate transform relative to the single image plate (for room-mounted displays) or
to the left and right image plates (for head-mounted displays)
Method
void setPhysicalScreenWidth(double width) Method
void setPhysicalScreenHeight(double height) void setTrackerBaseTolmagePlate(Transform3D trans)
void setTrackerBaseToLeftimagePlate(Transform3D trans)
void setTrackerBaseToRightimagePlate(Transform3D trans)

340

339
Viewing the scene

Viewing the scene
Describing the user’s physical body Describing the user’s physical body

® Methods orphysicalBody ~ set the eye and ear positions, and the ® Methods orphysicalBody —also set the head tracker’s position
relative to the head, and the screen’s position relative to the eye

user’s height

Method Method
PhysicalBody() void setHeadToHeadTracker(Transform3D trans)
void setNominalEyeOffsetFromNominalScreen(double offset)

void setLeftEarPosition(Point3d position)

void setRightEarPosition(Point3d position)

void setlLeftEyePosition(Point3d position)

void setRightEyePosition(Point3d position)

void setNominalEyeHeightFromGround(double height)

341 342

Viewing the scene Viewing the scene
Describing the physical environment View example code
® Methods orphysicalEnvironment Set the coexistence to tracker ® Create aanvas3D with a default configuration (automatically
base transform creating ascreen3D)
Method Canvas3D myCanvas = new Canvas3D(null);
PhysicalEnvironment() ® Create aview and give it theanvasap
void setCoexistenceToTrackerBase(Transform3D trans)

View myView = new View();
® ThePhysicalEnvironment also describes the set of available myView.setCanvas3D(myCanvas);
input sensors, discussed in a later section
p ® And attach the/iewPlatorm to theview
myView.attachViewPlatform(myPlatform);

® Use defaults for the physical body, physical environment, and
miscellaneous transforms

343 344
Viewing the scene Viewing the scene
Using view window policies Using view window policies
® A view's resize policysets how the view changes on a window ® A view’s movement policgets how the view changes on a
resize window move

PHYSICAL_WORLD VIRTUAL_WORLD PHYSICAL_WORLD VIRTUAL_WORLD
Same view fills window View changes to see more/less Same view fills window View shifts to see
left/right/above/below

346

345
Viewing the scene

Viewing the scene
Using view window policies Using view window policies

® When using head tracking, the constraint system automatically ® Whennot using head tracking,\aew 's eyepoint policysets how
changes the view frustum as the users head moves the view frustum changes on a window move

RELATIVE_TO_SCREEN RELATIVE_TO_WINDOW
Frustum changes Frustum doesn't
change

® RELATIVE_TO_FIELD_OF_VIEW (default) enables the application to
set the field of view directly. The eyepoint changes accordingly.

348

347

Viewing the scene

Viewing the scene
View class methods View class methods

® \When using &®ELATIVE_TO_FIELD_OF_VIEWwindow eyepoint

® view methods set these window policies
policy, you can set theéew s field of view
Method
void setWindowEyepointPolicy(int policy) Method
void setWindowMovementPolicy(int policy) void setFieldOfView(double fovx)
void setWindowResizePolicy(int policy)

349 350
Viewing the scene Viewing the scene
Setting the view screen scale policy Setting the view monoscopic policy

® A view's monoscopic view policselects how a single-image

® A view's screen scale policgelects how a view’s scale factor is
chosen: view is created when@anvas3D is not in stereo mode
® SCALE_EXPLICIT: Set it usingsetScreenScale ® LEFT_EYE_VIEW render from the left eye
® SCALE_SCREEN_SIzEderive it from the screen’s physical size ® RIGHT_EYE_VIEW render from the right eye
(default) ® CYCLOPEAN_EYE_VIEWender from a "center" eye midway
between left and right eyes (default)
Method
void setScreenScalePolicy(int policy) Method
void setMonoscopicViewPolicy(int policy)

void setScreenScale(double scale)

352

351
Viewing the scene Viewing the scene
Using a desktop configuration Using an HMD configuration

® Use a singleanvas3p for a single drawing surface in a desktop ® Use twocanvas3Ds for left and right drawing surfaces in an HMD
configuration configuration

353

Viewing the scene

Using a portal configuration

® Use threecanvasaDs for left, front, and right drawing surfaces in
a portal configuration

355

Viewing the scene

Using multiple view platforms

® A scene graph may contain multipiewplatorm s
® When aview is attached to a platform, the scene is rendered
from that viewpoint
® Moving aview from one platform to another "teleports" the
user to a new viewpoint

354

Viewing the scene

Using a wall configuration

® Use four or mor€anvas3bs for a multi-screen drawing surface in
a wall configuration

356

Viewing the scene

Using multiple views

® A viewPlatorm may have multipleiew s attached
® Eachview renders the same scene from that platform
® You could track multiple users, each with their ovigwv on
that platform

357

Viewing the scene

Immersive workbench example code

For an immersive workbench, use a single canvas and screen
myView.setCanvas3D(myCanvas);

Use a room-mounted display view policy:

myView.setViewPolicy(View.SCREEN_VIEW);

Attach the view to the user’s head:

myViewPlatform.setViewAttachPolicy(View.NOMINAL_HEAD);

Use virtual-world window policies and a screen-relative eyepoint:

myView.setWindowResizePolicy(View.VIRTUAL_WORLD);
myView.setWindowMovementPolicy(View.VIRTUAL_WORLD);
myView.setWindowEyePointPolicy(RELATIVE_TO_SCREEN);

359

Viewing the scene

Summary

A viewPlatorm positions a user'giew of the scene
A view controls how to render the scene

A canvas3D selects the region of the screen in whichea
should render

A screen3D describes that screen
A PhysicalBody ~describes the user

A PhysicalEnvironment describes the user’s environment

358

Viewing the scene

Immersive workbench example code

® Enable head-tracking and place co-existence at the tracker base:

myView.setTrackingEnable(true);
myPhysEnv.setCoexistenceToTrackerBase(ident);

Locate the tracker base relative to the workbench:

Screen3D myScreen = myCanvas.getScreen3D();
myScreen.setTrackerBaseTolmagePlate(transform);

® And configure the screen’s size and scale policy:

myScreen.setPhysicalScreenHeight(height);
myScreen.setPhysicalScreenWidth(width);
myScreen.setScreenScalePolicy(View.SCALE_EXPLICIT);

360

Building a simple universe

Motivation 361
Using SimpleUniver: 362
SimpleUniverse class methods- 363
SimpleUniverse example cod 364
Summary 365

361

Building a simple universe

Motivation

® You can create universes, locales, branchs, view platforms,
views, and so forth by yourself

® Or you can use th&mpleUniverse utility to create a standard set

for you
® Far easier and appropriate for most applications

363

Building a simple universe

SimpleUniverse class methods

® Methods orsimpleuniverse build the universe and attach
content to it

Method
SimpleUniverse(Canvas3D canvas)
void addBranchGraph(BranchGroup group)

362

Building a simple universe

Using SimpleUniverse

® A sSimpleUniverse ~ encapsulates a common superstructure

364

Building a simple universe

SimpleUniverse example code

® Create aanvas3D with a default configuration (automatically
creating ascreen3D)

Canvas3D myCanvas = new Canvas3D(null);
® Create @impleUniverse ~ and give it thecanvas3b
SimpleUniverse myUniverse = new SimpleUniverse(myCanvas
® And attach your content branch

myUniverse.addBranchGraph(myBranch);

365

Building a simple universe

Summary

® A simpleuniverse handles building standard infrastructure and
viewing components

VirtualUniverse

Locale

BranchGroup for viewing objects

TransformGroup ~ for moving the view platform

ViewPlatform

View

PhysicalBody

PhysicalEnvironment

367

Using input devices

Motivation

® There are more input devices besides the mouse:
® Joysticks
® Six-degree-of-freedom devices (6DOF) such as a Polhemus,
Bird, SpaceBall, Magellan, Ultrasonic tracketg.
® Button, knobs, sliders

® Read from any physical input device:
® Use the serial-device standard extension
® Use the networking API
® Use the Java-to-C interface

® Java 3D provides an input device abstraction to:
® Encapsulate device-specific details behind a generic interface
® Enable painless integration of new input devices within
existing Java applications

366

Using input devices

Motivation 367
Looking at input device component: 368
InputDevice interface methods: 369
Using sensor: 370
Using sensor 371
Using sensor: 372
Using sensor: 373
Sensor class hierarchy 374
Sensor class method: 375
Sensor class method: 376
Sensor class method: 377
SensorRead class hierarchy 378
SensorRead class methoek 379
Summary 380
368

Using input devices

Looking at input device components

® An implementation of theputDevice interface provides:
@ A description of a continuous device
@ |nitialization, prompt for a value, get a value, closte,
® Construction of one or mogensor s for abstract access to the
physical detectors

® Devices can be:
® Real (trackers, network values)
® Virtual (retrieved from a file, computationally generated)

369

Using input devices

InputDevice interface methods

® |Implement thenputDevice interface for a new input device
® Supply methods to initialize the device, and get data
® The principal result is one or more newnsor s that abstract
the device for generic use elsewhere in Java 3D

Method

void initialize()

void close()

void processStreaminput()

void pollAndProcessInput()

void setProcessingMode(int mode)
int getSensorCount()
Sensor getSensor(int sensorindex)

371

Using input devices

Using sensors

® PhysicalEnvironment maintains a list of sensors
® Plugboard model: The application assigns input device
Sensor S to positions in the sensor array

® Each one is specially identified by an array index

® The application can associate sensor indices with:
HeadIndex

LeftHandIndex

RightHandIndex

DominantHandIndex

NonDominantHandIndex

® Whatever sensor is at theadindex is used for head tracking,
and so forth

370

Using input devices

Using sensors

® Sensor represents an abstract 6DOF input and any associated
buttons/knobs

® Thesensor abstraction enables a separation between physical and

virtual worlds
® Maps physical position, orientation, and state to an abstract
6DOF value and state
® Provides generic methods for accessing these values
® Available sensors are managed byrhgicalEnvironment

® Sensors are built by low-leveputbevice implementations

372

Using input devices

Using sensors

® A sensor manages the laktread values asensorRead Objects

® EachsensorRead contains:
® A time-stamp
® A 6DOF value
® The button states

® A sensor can returntansform3D that can be written directly to
a TransformGroup

373

Using input devices

Using sensors

® Sensorprediction policiesenable a sensor to predict a future

value assuming:
® The sensor is associated with a hand (a data glove, etc.)

® The sensor is associated with a head (HMD, etc.)

375

Using input devices

Sensor class methods

® Methods orsensor get access to the input device . . .

374

Using input devices

Sensor class hierarchy

® Sensor extendbject

Class Hierarchy

java.lang.Object
javax.media.j3d.Sensor

Method

Sensor(InputDevice device)

InputDevice getDevice()

void setDevice(InputDevice device)

int getSensorButtonCount()

376

Using input devices

Sensor class methods

® ... and get the latest input

Method

SensorRead getCurrentSensorRead()

int getSensorReadCount()

void lastRead(Transform3D read)

void lastRead(Transform3D read, int kth)

int lastButtons()

int lastButtons(int kth)

long lastTime()

long lastTime(int kth)

377

Using input devices

Sensor class methods

® Methods also set a prediction policy and get a predicted value

Method

void setPredictionPolilcy(int policy)

void setPredictor(int predictor)

void getRead(Transform3D read)

void getRead(Transform3D read, long deltaT)

® Prediction policies include’RepiCT_NoONEdefault) and
PREDICT_NEXT_FRAME_TIME

® Predictors includeso_prebicTtoefault) ,HEAD_PREDICTORand
HAND_PREDICTOR

379

Using input devices

SensorRead class methods

® Methods orsensorRead get the current button state and 3D
transform

Method

SensorRead()

void get(Transform3D result)
int getButtons()

long getTime()

378

Using input devices

SensorRead class hierarchy

® SensorRead extendbject and encapsulates the latest data from
an input device

Class Hierarchy

java.lang.Object
javax.media.j3d.SensorRead

380

Using input devices

Summary

® To use a new input gadget, implementitipetDevice interface
and supply methods to read that gadget

® Provide high-level generic access to that device throwsghsar
® A sensorRead contains a reading from tisensor

® Use methods osensorRead to get the associated transform and
button state

381

Creating behaviors

Motivation

Motivation

Behavior class hierarchy
Creating behaviors

Creating behaviors

Behavior class method:

Behavior example cod

Creating behavior scheduling boune

Anchoring scheduling bound:

Behavior class method:
Scheduling bounds example coe

Waking up a behavior

WakeupCriterion class hierarchy

WakeupCriterion class method

Waking up on an AWT event
Waking up on elapsed timi

Waking up on shape collisior

Waking up on viewer proximity

Composing wakeup criterior:

Composing Wakeup Criterior:

WakeupCondition class hierarchy

WakeupCondition class methods-
WakeupCondition subclass methoels:

WakeupCondition example cock

WakeupCondition example cock

WakeupCondition exampls

Summary

383

Creating behaviors

Motivation

® Java 3D behavior support:

® Supports arbitrary content changes - behaviors are just Java

methods

® Schedules behaviors to run only when necessary

® Enables composability where independent behaviors may run
in parallel without interfering with each other

382
383
384
385
386
387
388
389
390
301
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

® Provides basic dead reckoning for animation execution

independent of host speed

382

Creating behaviors

Motivation

® A Behavioris a Java class that makes changes to a scene graph

® In a broad sense, your entire Java application is a behavior

® Java 3D also providessahavior

class as a base class for smaller

components that change the scene

® Often one behavior for each shape being animated

384

Creating behaviors

Behavior class hierarchy

® Behavior extends.eaf

® Your application extendsehavior

further to create one or more

behaviors to change scene content

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.Node
javax.media.j3d.Leaf

javax.media.j3d.Behavior

385 386

Creating behaviors Creating behaviors
Creating behaviors Creating behaviors
® Every behavior contains: ® A behavior can do anything
® An initialize method called when the behavior is made live ® Perform computations
® Update its internal state
® A processStimulus method called when the behavior wakes ® Modify the scene graph
up ® Start a thread
® Wakeup conditions controlling when to wakeup next ® For example, a behavior to rotate a radar dish to track an object:
® Respecified on each wakeup ® On initialization, set initial wakeup criteria
® Get the object’s location
® Scheduling bounds controlling scheduling ® Create a transform to re-orient the radar dish
® When the viewer’s activation radius intersects the bounds, ® Set arransformGroup ~ of the radar dish
the behavior is scheduled @ Set the next wakeup criteria
® Return
387 388
Creating behaviors Creating behaviors
Behavior class methods Behavior example code
® Methods orBehavior include those your subclass provides, and a ® Extend thesehavior class and fill in thenitialize and
generic method to enable or disable the behavior processStimulus ~ methods
public class MyBehavior extends Behavior {
Meth_Od private WakeupCriterion criteria;
Behavior() public MyBehavior() {
void initialize() /I Do something on construction

void processStimulus(Enumeration criteria)
void setEnable(boolean onOff)

void wakeupOn(WakeupCondition criteria) public void initialize() {
/I Do something at startup

criteria = new WakeupOnAWTEvent(. . .);

We{keupOn(criteria);

public void processStimulus(Enumeration criteria) {
/I Do something on a wakeup

Wa{keupOn(criteria);

389 390

Creating behaviors Creating behaviors
Creating behavior scheduling bounds Anchoring scheduling bounds
® A behavior only needs to be scheduled if the viewer is nearby ® A behavior’s bounding volume can be relative to:
® The viewer's activation radius intersectsstheduling ® The behavior’s coordinate system
bounds ® \/olume centered on origin
® Behavior bounding enables costly behaviors to be skipped if ® As origin moves, so does volume

they aren’t nearby
® A Bounding leafs coordinate system

® A behavior’s scheduling bounds is a bounded volume ® Volume centered on leaf node elsewhere in scene graph
® Sphere, box, polytope, or combination ® As that leaf node moves, so does volume
® To make a global behavior, use a huge bounding sphere ® If behavior's origin moves, volume does not

® By default, behaviors have no scheduling bounds and are never
executed!
® Common error:forgetting to set scheduling bounds

391 392
Creating behaviors Creating behaviors
Behavior class methods Scheduling bounds example code
® Methods orBehavior set the scheduling bounds ® Set bounds relative to the behavior's coordinate system
Method Behavior myBeh = new MyBehavior();

h _ myBeh.setSchedulingBounds(myBounds);
void setSchedulingBounds(Bounds bounds)

void setSchedulingBoundingLeaf(BoundingLeaf leaf) ® Or relative to a bounding leaf's coordinate system

TransformGroup myGroup = new TransformGroup();
BoundingLeaf myLeaf = new BoundingLeaf(bounds);
myGroup.addChild(myLeaf);

Behavior myBeh = new MyBehavior();
myBeh.setSchedulingBoundingLeaf(myLeaf);

393

Creating behaviors

Waking up a behavior

® Even when scheduled, a behavior runs only whakeup

criterion are met

® A number of frames or milliseconds have elapsed
® A behavior or AWT posts an event

® A transform changes inTansformGroup

® A shape collides with another shape

® A view platform or sensor gets close

® Multiple criteria can be AND/ORed to formakeup conditions

395

Creating behaviors

WakeupCriterion class methods

® The wakeupCriterion

base class only provides a method to ask if

the wakeup has been triggered

® Each of the subclasses provide constructors and methods for

specific wakeup criterion

394

Creating behaviors

WakeupCriterion class hierarchy

® WakeupCriterion ~ eXtendSwvakeupCondition to provide multiple
ways to wakeup a behavior

Class Hierarchy

java.lang.Object
javax.media.j3d.WakeupCondition
javax.media.j3d.WakeupCriterion
javax.media.j3d.WakeupOnActivation
javax.media.j3d.WakeupOnAWTEvent
javax.media.j3d.WakeupOnBehaviorPost
javax.media.j3d.WakeupOnCollisionEntry
javax.media.j3d.WakeupOnCollisionExit
javax.media.j3d.WakeupOnDeactivation
javax.media.j3d.WakeupOnElapsedFrames
javax.media.j3d.WakeupOnElapsedTime
javax.media.j3d.WakeupOnSensorEntry
javax.media.j3d.WakeupOnSensorExit
javax.media.j3d.WakeupOnTransformChange
javax.media.j3d.WakeupOnViewPlatformEntry
javax.media.j3d.WakeupOnViewPlatformExit

Method

WakeupCriterion()

396

Creating behaviors

Waking up on an AWT event

® A behavior can wakeup on a specified AWT event

® To use the mouse to rotate geometry:
® Wake up a behavior on mouse press, release, and drag
® On each drag event, compute the distance the mouse has
moved since the press and map it to a rotation angle
® Create a rotation transform and write toransformGroup

boolean hasTriggered()

Method

WakeupOnAWTEvent(int AWTid)

AWTEvent getAWTEvent()

397

Creating behaviors

Waking up on elapsed time

® A behavior can wakeup after a number of elapsed frames or
milliseconds

Method
WakeupOnElapsedFrames(int frameCount)
int getElapsedFrameCount()

Method
WakeupOnElapsedTime(long milliseconds)
long getElapsedFrameTime()

399

Creating behaviors

Waking up on viewer proximity

® Viewer proximity can wakeup a behavior on:
@ Entry/exit of theviewPlatform in a region

Method

WakeupOnViewPlatformEntry(Bounds region)
WakeupOnViewPlatformExit(Bounds region)
Bounds getBounds()

® Entry/exit of the sensor in a region

Method

WakeupOnSensorEntry(Bounds region)
WakeupOnSensorExit(Bounds region)
Bounds getBounds()

398

Creating behaviors

Waking up on shape collision

® A behavior can wakeup whersgape3D’s geometry:
@ Enters/exits collision with another shape
® Moves while collided with another shape

® Collision detection can be approximate and fast by using
bounding volumes, not geometry

Method

WakeupOnCollisionEntry(SceneGraphPath armingpath)

WakeupOnCollisionExit(SceneGraphPath armingpath)

WakeupOnCollisionMovement(SceneGraphPath armingpath)

SceneGraphPath getArmingPath()

SceneGraphPath getTriggeringPath()

® Sensor proximity can wakeup a behavior in the same way on:

400

Creating behaviors

Composing wakeup criterion

® A behavior can wake up when a set of criterion occur:
@ Criterion are ANDed and ORed together to famakeup
conditions

® For example:
® Wakeup on any of several AWT events (mouse press, release,
or drag)
® Wakeup on viewer proximity OR after some time has elapsed

401

Creating behaviors

Composing Wakeup Criterion

® Wakeup conditions can be complex and changing, for example:
® In a game, the user must press two buttons within a time limit

to open a door

® Behavior’s initial wakeup conditions are:
® Viewer near button 1 or viewer near button 2

® After button 1 is pressed, conditions become:
® Viewer near button 2 or time elapsed

@ [f time elapses, conditions revert back to the initial one

@ |If button 2 is pressed in time, behavior sends event to wakeup
door-opening behavior, then exits without rescheduling

403

Creating behaviors

WakeupCondition class methods

® Methods on thevakeupConditon base class only ask about the
grouped wakeup criterion

® Each of the subclasses provide constructors and methods for
specific wakeup groupings

Method

WakeupCondition()

Enumeration allElements()
Enumeration triggeredElements()

402

Creating behaviors

WakeupCondition class hierarchy

® WakeupCondition ~extendsobject and provides several subclasses
to group wakeup criterion

Class Hierarchy

java.lang.Object
javax.media.j3d.WakeupCondition

javax.media.j3d.WakeupAnd
javax.media.j3d.WakeupAndOfOrs
javax.media.j3d.WakeupOr
javax.media.j3d.WakeupOrOfAnds

404

Creating behaviors

WakeupCondition subclass methods

® ThewakeupConditon —subclasses have constructions that use
arrays ofwakeupCriterion Or otherwakeupCondition S

Method

WakeupAnd(WakeupCriterion[] conditions)
WakeupAndOfOrs(WakeupOr([] conditions)
WakeupOr(WakeupCriterion[] conditions)
WakeupOrOfAnds(WakeupAnd[] conditions)

405 406

Creating behaviors Creating behaviors
WakeupCondition example code WakeupCondition example code
® Create AWT event wakeup criterion ® Create the behavior
WakeupCriterion[] onMouseEvents = Behavior myBeh = new MyBehavior();
new WakeupCriterion[2];
onMouseEvents[0] = ® And set the behavior's wakup conditions and scheduling bounds

new WakeupOnAWTEvent(MouseEvent. MOUSE_PRESSED);
onMouseEvents[1] = . _ .
new WakeupOnAWTEvent(MouseEvent. MOUSE_RELEASED) ; BoundingSphere myBounds = new BoundingSphere(
new Point3d(), 1000.0);

® Combine together those criterion myBeh.setSchedulingBounds(myBounds);

WakeupCondition onMouse =
new WakeupOr(onMouseEvents);

407 408
Creating behaviors Creating behaviors
WakeupCondition example Summary

® A Behavior IS a base class extended to hold:
® An initialize method called when made live
® A processStimulus method called at wakeup

® A wakeupCriterion defines a specific condition for behavior
wakeup, including elapsed time, AWT events, etc.

® A wakeupConditon ~combines together multipl@akeupCriterion

® Behaviors are schedulable (if enabled) when the viewer’s
activation radius intersects the behavior’s scheduling bounds
® Default isno scheduling boungdso nothing is scheduled!

409

Creating interpolator behaviors

Motivation

Using interpolator value mapping:

Mapping time to alpha
Mapping time to alpha-

Building one-shot and cyclic behavior

Alpha class hierarchy

Alpha class method:

Alpha class methods

Types of interpolators-

Types of interpolators-
Using Interpolators-

Interpolator class hierarchy

Interpolator class methods-

PositionInterpolator class methog

RotationInterpolator class methoe

Scalelnterpolator class methoés:

Colorinterpolator class method

Transparencylinterpolator class methogt

SwitchValuelnterpolator class methoes:

RotationInterpolator example codk

Rotationlnterpolator exampl

Pathinterpolator class methods
PositionPathInterpolator class methogt

RotationPathinterpolator class methoss

RotPosPathinterpolator class methost

RotPosScalePathinterpolator class methegs

Summary

411

Creating interpolator behaviors

Using interpolator value mappings

® An interpolator uses two mappings:
® Time-to-Alpha

® Alphais a generalized value that varies from 0.0 to 1.0

over a time interval

® Alpha-toValue

® Different interpolator types map to different values, such

as transforms, colors, switches

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

410

Creating interpolator behaviors

Motivation

® Many simple behaviors can be expressed as interpolators
® Vary a parameter from a starting to an ending value during a
time interval
® Transforms, colors, switches

® Java 3D providemterpolator behaviors
® Enables optimized implementations
® Since they are closed functions of time, they can be used for
dead-reckoning over a network

412

Creating interpolator behaviors

Mapping time to alpha

® An Alpha generatoccomputes alpha using:
Trigger time

Phase Delayefore initial alpha change
Increasingtime for increasing alpha
At-Onetime for constant high alpha
Decreasingime for decreasing alpha
At-Zerotime for constant low alpha

® Increasing and decreasing phases may be individually enabled or
disabled and their acceleration controlled
® Increasing rampontrols increasing acceleration
® Decreasing ramontrols decreasing acceleration

413 414

Creating interpolator behaviors Creating interpolator behaviors

Mapping time to alpha Building one-shot and cyclic behaviors

® This model of alpha generalizes to several different types of
one-shot and cyclic behaviors

415 416
Creating interpolator behaviors Creating interpolator behaviors
Alpha class hierarchy Alpha class methods
® Alpha extendSObject ® Alpha methods construct and control alpha start and looping, or

get the current value

Class Hierarchy

java.lang.Object Method

javax.media.j3d.Alpha Alpha()
void setStartTime(long millisecs)

void setTriggerTime(long millisecs)
void setLoopCount(int count)

void setMode(int mode)

float value()

float value(long millisecs)

® Alpha modes includel\CREASING_ENABLEand
DECREASING_ENABLEO enable use of increasing and/or decreasing
portions of the alpha envelope

417 418

Creating interpolator behaviors Creating interpolator behaviors
Alpha class methods Types of interpolators
® Apha methods also set stage parameters ® Simple interpolators map alpha to a value between start and end
values
Method ® Single transforms
void setAlphaAtOneDuration(long millisecs) @ Positioninterpolator , RotationInterpolator ,and
void setAlphaAtZeroDuration(long millisecs) Scalelnterpolator
void setDecreasingAlphaDuration(long millisecs)
void setDecreasingAlphaRampDuration(long millisecs) @ Colors and transparency
void setincreasingAlphaDuration(long millisecs) @ Colorinterpolator andTransparencyinterpolator
void setincreasingAlphaRampDuration(long millisecs)
void setPhaseDelayDuration(long millisecs) ® switch group values

® SwitchValuelnterpolator

419 420
Creating interpolator behaviors Creating interpolator behaviors
Types of interpolators Using Interpolators
® Pathinterpolators map alpha to a value along a path of two or ® All interpolators specify gargetinto which to write new values
more values
® Single transforms ® Transform interpolators userensformGroup ~ target
@ PositionPathinterpolator and
RotationPathinterpolator ® A Colorinterpolator uses aviaterial target
® Combined transforms @ A Transparencylinterpolator uses a
@ RotPosPathinterpolator and TransparencyAttributes target

RotPosScalePathinterpolator
® A SwitchValuelnterpolator uses &witch target

® And so forth

421

Creating interpolator behaviors

Interpolator class hierarchy

® Interpolator extendsehavior , and is further extended for the
different types of interpolators

Class Hierarchy

java.lang.Object

javax.media.j3d.SceneGraphObject
javax.media.j3d.Node
javax.media.j3d.Leaf
javax.media.j3d.Behavior
javax.media.j3d.Interpolator

javax.media.j3d.ColorInterpolator

javax.media.j3d.Pathinterpolator
javax.media.j3d.PositionPathInterpolator
javax.media.j3d.RotationPathInterpolator
javax.media.j3d.RotPosPathinterpolator
javax.media.j3d.RotPosScalePathInterpola t

javax.media.j3d.Positioninterpolator

javax.media.j3d.RotationInterpolator

javax.media.j3d.Scalelnterpolator

javax.media.j3d.SwitchValuelnterpolator

javax.media.j3d.TransparencyInterpolator

423

Creating interpolator behaviors

Positioninterpolator class methods

® Positioninterpolator linearly interpolations a position from a
starting position to an ending position

® Methods orpositioninterpolator set the translation axis, value

range, and target
® Sets the translation inTaansformGroup

Method

PositionInterpolator(Alpha alpha, TransformGroup target)
void setAxisOfTranslation(Transform3D axis)

void setEndPosition(float pos)

void setStartPosition(float pos)

void setTarget(TransformGroup target)

422

Creating interpolator behaviors

Interpolator class methods

® Methods onnterpolator just set the alpha generator to use

® The subclasses efterpolator add methods for specific types
of interpolators

Method

Interpolator()

void setAlpha(Alpha alpha)

® Let's look at simple interpolators first . . . (they are all pretty
much the same)

424

Creating interpolator behaviors

RotationInterpolator class methods

@ RotationInterpolator linearly interpolations a rotation from a
starting angle to an ending angle

® Methods orrotationinterpolator set the rotation axis, value

range, and target
® Sets the rotation in&ansformGroup

Method

RotationInterpolator(Alpha alpha, TransformGroup target)
void setAxisOfRotation(Transform3D axis)

void setMaximumAngle(float angle)

void setMinimumAngle(float angle)

void setTarget(TransformGroup target)

425

Creating interpolator behaviors

Scalelnterpolator class methods

® Scalelnterpolator linearly interpolations a scale value from a
starting value to an ending value

® Methods orscalelnterpolator set the scale axis, value range,

and target
@ Sets the scale inTaansformGroup

Method

Scalelnterpolator(Alpha alpha, TransformGroup target)
void setAxisOfScale(Transform3D axis)

void setMaximumScale(float scale)

void setMinimumScale(float scale)

void setTarget(TransformGroup target)

427

Creating interpolator behaviors

Transparencylnterpolator class methods

® Transparencylinterpolator linearly interpolates a transparency

value from a starting value to an ending value

® Methods onrransparencyinterpolator set the value range and

target
@ Sets the transparency imransparencyAttributes

426

Creating interpolator behaviors

ColoriInterpolator class methods

® Colorinterpolator linearly interpolates a diffuse color (in a
red-green-blue color space) from a starting color to an ending
color

® Methods orcolorinterpolator set the value range and target
® Sets the diffuse color inngaterial

Method

ColorInterpolator(Alpha alpha, Material target)

void setStartColor(Color3f color)

void setEndColor(Color3f color)

void setTarget(Material target)

Method

Transparencylnterpolator(Alpha alpha,
TransparencyAttributes target)

void setMaximumTransparency(float trans)

void setMinimumTransparency(float trans)

void setTarget(TransparencyAttributes target)

428

Creating interpolator behaviors

SwitchValuelnterpolator class methods

® SwitchValuelnterpolator linearly interpolates a child index
value from a starting index to an ending index

® Methods orswitchvaluelnterpolator set the value range and

target
@ Sets the child choice insavitch

Method

SwitchValuelnterpolator(Alpha alpha, Switch target)
void setFirstChildindex(int index)

void setLastChildIndex(int index)

void setTarget(Switch target)

® (Whew! That's all of the simple interplators)

429

Creating interpolator behaviors

Rotationinterpolator example code

® Create aransformGroup to animate
TransformGroup myGroup = new TransformGroup();
® Create an alpha generator

Alpha upRamp = new Alpha();
upRamp.setincreasingAlphaDuration(10000);
upRamp.setLoopCount(-1); // loop forever

® Create and set up a rotation interpolator

Rotationinterpolator mySpinner = new RotationInterpol H
mySpinner.setAxisOfRotation(new Transform3D());
mySpinner.setMinimumAngle(0.0f);

mySpinner.setMaximumAngle((float)(Math.PI * 2.0));

® Set the scheduling bounds and add it to the scene

mySpinner.setSchedulingBounds(bounds);
myGroup.addChild(spinner);

431

Creating interpolator behaviors

Pathinterpolator class methods

® Methods orpathinterpolator set the alpha generator to use and

the "knots" used for the path
® Knots are specific alpha values that correspond to specific
positions, rotations, etc. along a path
® Interpolation is done between knots, then mapped to the
corresponding interpolated position, rotation, etc.

® The subclasses ehthinterpolator add methods for specific
types of path interpolators

Method
Pathinterpolator(Alpha alpha, float[] knots)
void setKnot(int index, float knot)

® Let's look at the various path interpolators . . . (and they too are

pretty much all the same)

430

Creating interpolator behaviors

RotationInterpolator example

[SphereMotion]

432

Creating interpolator behaviors

PositionPathinterpolator class methods

® PositionPathinterpolator interpolates a position along a path

® Methods orpositionPathinterpolator set the translation axis,
path, and target
® Sets the translation inT@ansformGroup

Method

PositionPathinterpolator(Alpha alpha, TransformGroup
target, Transform3D axis, float[] knots, Point3f[]
positions)

void setAxisOfTranslation(Transform3D axis)

void setPosition(int index, Point3f pos)

void setTarget(TransformGroup target)

433

Creating interpolator behaviors

RotationPathinterpolator class methods

® RotationPathInterpolator interpolates a rotation along a path

® Methods orrotationPathinterpolator set the translation axis,
path, and target
® Sets the rotation in BansformGroup

Method
RotationPathInterpolator(Alpha alpha, TransformGroup
target, Transform3D axis, float[] knots, Quat4f[] quats)

void setAxisOfRotation(Transform3D axis)
void setQuat(int index, Quat4f quat)
void setTarget(TransformGroup target)

435

Creating interpolator behaviors

RotPosScalePathinterpolator class methods

® RotPosScalePathinterpolator interpolates a position, rotation,
and scale along a path

® Methods orrotPosScalePathinterpolator set the translation
axis, path, and target
@ Sets the translation, rotation, and scale Tra@formGroup

Method

RotPosScalePathinterpolator(Alpha alpha, TransformGroup
target, Transform3D axis, float[] knots, Quat4f[] quats,
Point3f[] positions, float] scales)

void setAxisOfRotPosScale(Transform3D axis)

void setPosition(int index, Point3f pos)

void setQuat(int index, Quat4f quat)

void setScale(int index, float scale)

void setTarget(TransformGroup target)

434

Creating interpolator behaviors

RotPosPathinterpolator class methods

® RotPosPathinterpolator interpolates a position and rotation
along a path
® Methods orrotPosPathinterpolator set the translation axis,

path, and target
@ Sets the translation and rotation imr&sformGroup

Method

RotPosPathInterpolator(Alpha alpha, TransformGroup target,
Transform3D axis, float[] knots, Quat4f[] quats, Point3f[]
positions)

void setAxisOfRotPos(Transform3D axis)

void setPosition(int index, Point3f pos)

void setQuat(int index, Quat4f quat)

void setTarget(TransformGroup target)

436

Creating interpolator behaviors

Summary

® An Interpolator behavior varies a value over time using two
mappings
® Time-to-alpha
® Alpha-to-value

® An Alpha generator maps time to an alpha value that varies from
0.0 to 1.0 through several stages

® Specific interpolator types use an alpha generator, and a target
node to vary position, rotation, color, transparency, etc.

437

Using specialized behaviors

Motivation

Specialized behavior class hierarck
Using billboard behaviors:

Using billboard behaviors:

Using billboard alignment modes

Billboard class methods:

Using level-of-detail behavior:
LOD class methods-

DistanceLOD class methods

Summary

439

Using specialized behaviors

Specialized behavior class hierarchy

® Specialized behaviors are all extensionsebdfvior

438
439
440
441
442
443
444
445
446
447

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.Node
javax.media.j3d.Leaf

javax.media.j3d.Behavior
javax.media.j3d.Billboard
javax.media.j3d.LOD

javax.media.j3d.DistanceLOD

438

Using specialized behaviors

Motivation

® As with interpolators, some behaviors are so common they are
provided upfront by Java 3D

® Billboard auto-rotation of shapes to face the viewer

® Switching between shapevels of detaibased upon distance
to the viewer

440

Using specialized behaviors

Using billboard behaviors

® A Billboard is a specialized behavior that:
® Tracks theviewPlatform

® Generates a rotation about an axis so that the Z-axis points at
the platform

® Writes that transform to a targetnsformGroup

441

Using specialized behaviors

Using billboard behaviors

T L L R

Viewer stéps to the right . . . e an-d the behavior
immediately rotates the shape

443

Using specialized behaviors

Billboard class methods

® Methods orsillboard ~ set the alignment mode, rotation axis or

point, and the target
® The default alignment mode is about the Y axis

Method

Billboard()

void setAlignmentMode(int mode)

void setAlignmentAxis(Vector3f axis)
void setRotationPoint(Point3f point)
void setTarget(TransformGroup group)

® Alignment modes includeoTATE_ABOUT_Axigdefault) and
ROTATE_ABOUT_POINT

442

Using specialized behaviors

Using billboard alignment modes

® Billboard rotation can be about:
® An axis to pivot theransformGroup

® A point to arbitrarily rotate theransformGroup
® Rotation makes the group’s Y-axis parallel to the
viewer's Y-axis

444

Using specialized behaviors

Using level-of-detail behaviors

® | evel-of-Detail (LOD) is a specialized behavior that:
® Tracks theviewPlatform
® Computes a distance to a shape
® Maps the distance ®witch group child choices

® TheLopabstract class generalizes level-of-detail behaviors

® ThebistanceLOD class implements distance-based switching
level-of-detail

445

Using specialized behaviors

LOD class methods

® Methods onobmanage a list adwitch groups to control based

upon viewer distance

446

Using specialized behaviors

DistanceLOD class methods

® Methods omistanceLOD set the distances at which detail
switches should occur

Method

Method

LOD()

DistanceLOD()

void setSwitch(Switch switch, int index)

void setDistance(int whichLOD, double distance)

void addSwitch(Switch switch)

void insertSwitch(Switch switch, int index)

void removeSwitch(int index)

447

Using specialized behaviors

Summary

® Billboard automatically rotates &ansformGroup SO that its
Z-axis always points towards the viewer

® DistanceLOD automatically switches children irsaitch group
based upon distance to the viewer

448

Picking shapes

Motivation

Example

Using the picking API
Where is the API?2

Node class method:

Locale and BranchGroup class methoés:

Types of PickShap

PickShape class hierarchy

PickShape class method

PickRay class methods

PickSegment class methoe

PickPoint class methods

PickBounds class method

Getting Pick Result:

SceneGraphPath class hierarchy

SceneGraphPath class methogs

Using the mouse for a pick

Picking example cod

Picking example-

Summary

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

449

Picking shapes

Motivation

® Selection is essential to interactivity
® Without an ability to select objects you cannot manipulate
them

® The picking API enables selecting objects in the scene
@ |t supports various selection shapes
@ [t can report the first, any, all, or all sorted hits

451

Picking shapes

Using the picking API

® The Java 3D API divides picking into two portions
@ Control: clicking with a 2D mouse or move a 6DOF wand
® Selection: finding shapes that meet the search criteria

® Seperation enables interchangeable interaction methods
® The API designed for speed

® Picking only works on bounds
® Utilities provide more fine-grained pick support

450

Picking shapes

Example

[Pickworld]

452

Picking shapes

Where is the API?

® The API is distributed among a number of classes . . .

® Enable pickability of any node via methodsnaie
® |nitiate a pick using methods @bcale Or BranchGroup

® Pick methods take as an argumenicgshape
® PickBounds , PickPoint , PickRay , PickSegment

® Pick methods return one or m@eneGraphPath S

453

Picking shapes

Node class methods

® Methods omode enablepickability

Method
void setPickable(boolean onOff)
boolean getPickable()

455

Picking shapes

Types of PickShapes

® Picking intersects rickshape Wwith pickable shape bounding
volumes

® Pickray fires a ray from a position, in a direction
® Pick occurs for shape bounds the ray strikes

® pickSegment fires a ray along a ray segment between two

positions
® Pick occurs for shape bounds the ray segment intersects

® pickpoint checks the scene at a position
® Pick occurs for shape bounds that contain the position

® PpickBounds checks the scene at a position, in a bounded volume
® Pick occurs for shape bounds that intersect the bounded

volume

454

Picking shapes

Locale and BranchGroup class methods

® Methods Onocale Or BranchGroup initiate a pick on their

children
® Methods are identical for both classes

Method

SceneGraphPath[] pickAll(PickShape pickShape)

SceneGraphPath[] pickAllSorted(PickShape pickShape)

SceneGraphPath pickAny(PickShape pickShape)

SceneGraphPath pickClosest(PickShape pickShape)

456

Picking shapes

PickShape class hierarchy

® PickShape extendsObject

® This is further extended for various types of pick shapes

Class Hierarchy

java.lang.Object
javax.media.j3d.PickShape
javax.media.j3d.PickBounds
javax.media.j3d.PickPoint
javax.media.j3d.PickRay
javax.media.j3d.PickSegment

458

457
Picking shapes

Picking shapes
PickShape class methods PickRay class methods

® Methods orpickray set the position and aim direction used for a

® Ppickshape provides no further methods
pick intersection
® The pick shape types extepidkshape
Method
Method PickRay()
PickShape() PickRay(Point3d pos, Vector3d dir)
void set(Point3d pos, Vector3d dir)

460

459
Picking shapes

Picking shapes
PickSegment class methods PickPoint class methods

® Methods orpicksegment set the starting and ending positions for ® Methods orpickPoint ~ set the position used for a pick
the ray segment used for a pick intersection intersection

Method Method
PickSegment() PickPoint()
PickSegment(Point3d start, Point3d end) PickPoint(Point3d pos)
void set(Point3d start, Point3d end) void set(Point3d pos)

461

Picking shapes

PickBounds class methods

® Methods orpickBounds set the bounding volume used for a pick

intersection

Method

PickBounds()

PickBounds(Bounds bounds)

void set(Bounds bounds)

463

Picking shapes

SceneGraphPath class hierarchy

® SceneGraphPath extendsObject

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphPath

462

Picking shapes

Getting Pick Results

® The pick methods oOrocale Or BranchGroup return one or more
SceneGraphPath S

® EachsceneGraphPath contains:
® A Node for the shape that was picked
® TheLocale above it in the scene graph
® A list of theNodes from the picked shape up to theale

® The world-to-shape transform

464

Picking shapes

SceneGraphPath class methods

® Methods orsceneGraphPath get the shape (object) picked, the

locale above it, the transform to it, and nodes on the path between

the locale and the shape

Method

SceneGraphPath()

Node getObject()

Locale getLocale()

Node getNode(int index)

int nodeCount()
Transform3D getTransform()

465

Picking shapes

Using the mouse for a pick

® Create a behavior that wakes up on mouse events
® On a mouse release:
® Construct @ickRay from the eye passing through the 2D
mouse screen point

® |[nitiate a pick to find all pick hits along the ray, sorted
from closest to furthest

® Get the first pick hit in the returned data
® Do something to that picked shape

® (Re)declare interest in mouse events

467

Picking shapes

Picking example

[Pickworld]

466

Picking shapes

Picking example code

® Create a pick ray aimed using mouse screen data
PickRay myRay = new PickRay(rayOrigin, rayDirection
® Initiate a pick starting at iacale
SceneGraphPath[] results = myLocale.pickAllSorted(m \
® Get the first (closest) shape off the results

Node pickedObject = results[0].getObject();

468

Picking shapes

Summary

® Picking selects a shape pointed at by the user
® The pointing device can be anything (often the mouse)

® Pickability is enabled on a per-node basis

® Picking looks for the intersection offakshape with shape
bounding volumes
® PickBounds , PickPoint , PickRay ,andPickSegment y

® A pick is initiated on aocale Or BranchGroup

® A pick returns one or morgeneGraphPath S for the shapes hit by
the pick

469

Creating backgrounds

Motivation

Example

Types of backgrounds-
Background class hierarchy

Using background colors

Using background images:

Using background geometry

Background class method

Background color example cod

Background color exampl
Background image example codh

Background image exampt

Background geometry example coge-

Using background application bounek

Creating application bounds:
Anchoring application bounds

Background class methods-

Application bounds example code-

Summary

471

Creating backgrounds

Example

=3

[ExBluePrint

[ExBackgroundColor]

]

470
471
472
473
474
475
476
477
478
479

481
482
483
484
485
486
487
488

470

Creating backgrounds

Motivation

® You can add dackgroundo provide context for foreground
content

® Use backgrounds to:
® Set a sky color
® Add clouds, stars, mountains, city skylines
® Create an environment map

472

Creating backgrounds

Types of backgrounds

® Java 3D provides three types of backgrounds:
® Constant color
® Flat Image
® Geometry

® All types are built with @ackground node with:
® A color, image, or geometry
® A bounding volume controlling when the background is
activated

473

Creating backgrounds

Background class hierarchy

® All background features are controlled usiagkground

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject

javax.media.j3d.Node
javax.media.j3d.Leaf
javax.media.j3d.Background

475

Creating backgrounds

Using background images

® A Background node can set a background image
@ Fills canvas with the image
® Image upper-left is at the canvas upper-left

® To fill the canvas, use an image the size of the canvas

® Image overrides background color
® Same image for all viewing directions and lighting levels

® If you want an environment map, use background geometry

474

Creating backgrounds

Using background colors

® A Background node can set a single background color
® Fills canvas with the color
® Same color for all viewing directions and lighting levels

® |f you want a color gradient, use background geometry

476

Creating backgrounds

Using background geometry

® A Background node can set background geometry
® Geometry surrounds the viewer at an "infinite" distance
® As the viewer turns, they see different parts of the
geometry
® The viewer can never move closer to the geometry
® Geometry should be on a unit sphere
® The geometry is not lit by scene lights

® Use background geometry to:
® Create sky and ground color gradients
@ Build mountain or city skylines
® Do environment maps (ala QuickTimeVR)

477

Creating backgrounds

Background class methods

® Methods orBackground set the color, image, or geometry

Method

Background()

void setColor(Color3f color)

void setimage(ImageComponent2D image)

void setGeometry(BranchGroup group)

479

Creating backgrounds

Background color example

[ExBackgroundColor]

478

Creating backgrounds

Background color example code

® Create a background

Background myBack = new Background();
myBack.setColor(new Color3f(0.3f, 0.0f, 0.0f));

® Set the application bounds
BoundingSphere myBounds = new BoundingSphere(

new Point3d(), 1000.0);
myBack.setApplicationBounds(myBounds);

480

Creating backgrounds

Background image example code

® Load a texture image

TextureLoader myLoader = new TextureLoader("stars2.j
ImageComponent2D mylmage = myLoader.getimage();

® Create a background

Background myBack = new Background();
myBack.setimage(mylmage);

® Set the application bounds
BoundingSphere myBounds = new BoundingSphere(

new Point3d(), 1000.0);
myBack.setApplicationBounds(myBounds);

481

Creating backgrounds

Background image example

=3

[ExBackgroundimage] [ExBluePrint]

483

Creating backgrounds

Using background application bounds

® A background is applied when:
® The viewer's activation radius intersectsaplication
bounds
@ If multiple backgrounds are active, the closest is used
® |f no backgrounds are active, background is black

® Background bounding enables different backgrounds for different
areas of the scene

482

Creating backgrounds

Background geometry example code

® Create background geometry
BranchGroup myBranch = createBackground();
® Create a background

Background myBack = new Background();
myBack.setGeometry(myBranch);

® Set the application bounds

BoundingSphere myBounds = new BoundingSphere(
new Point3d(), 1000.0);
myBack.setApplicationBounds(myBounds);

484

Creating backgrounds

Creating application bounds

® A background’s application bounds is a bounded volume
® Sphere, box, polytope, or combination
® To make a global background, use a huge bounding sphere

® By default, backgrounds have no application bounds and are
never applied!
® Common error:forgetting to set application bounds

485 486
Creating backgrounds

Background class methods

Creating backgrounds

Anchoring application bounds

® A background bounding volume can be relative to: ® Methods orBackground set the application bounds

® The background’s coordinate system
® \/olume centered on origin
® As origin moves, so does volume

Method
void setApplicationBounds(Bounds bounds)
void setApplicationBoundingLeaf(BoundingLeaf leaf)

® A Bounding leafs coordinate system
® Volume is centered on leaf node elsewhere in scene graph
® As that leaf node moves, so does volume
® If background origin moves, volume does not

487 488

Creating backgrounds

Summary

Creating backgrounds

Application bounds example code

® Set bounds relative to the background’s coordinate system ® Background Sets the background color, image, or geometry

aagagcrgigﬁmyﬁgﬁggmg:(cﬁqgfggﬂgg ;;)_ ® Backgrounds are activated when the viewer's activation radius
yback setipp Y ‘ intersects the background's application bounds

® Or relative to a bounding leaf’s coordinate system ® Default isno application boundsso never takes effect

TransformGroup myGroup = new TransformGroup();
BoundingLeaf myLeaf = new BoundingLeaf(myBounds);
myGroup.addChild(myLeaf);

'Bé-ckground myBack = new Background();
myBack.setApplicationBoundingLeaf(myLeaf);

489

Working with fog

Motivation

Fog class hierarch

Fog class methods
Understanding fog effect:

Using exponential fog

ExponentialFog class methods-

ExponentialFog example cod

ExponentialFog exampl

Using linear fog

LinearFog class method:
LinearFog example cod

LinearFog example-

Depth cueing example:

Using fog influencing bounds and scopx

Fog class methods
Influencing bounds example cod

Clipping foggy shapes

Clip class hierarchy

Clipping shap

Using clip application bound:

Clipping shap

Clip class methods
Clip example cod

Clip example

Summary

Summary

491

Working with fog

Fog class hierarchy

® All fog types share attributes inherited from tog class

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject

javax.media.j3d.Node
javax.media.j3d.Leaf
javax.media.j3d.Fog
javax.media.j3d.ExponentialFog
javax.media.j3d.LinearFog

490

Working with fog

Motivation

® Fog increases realism and declutters a scene

® Fog also obscures distant shapes, enabling you to turn them off
and render the scene faster

® Java 3D provides two types of fog:

® Exponential
® Linear

492

Working with fog

Fog class methods

® Both types of fog have:
@ A color (default is black)
® A bounding volume and scope controlling the range of shapes

to affect

Method

void setColor(Color3f color)

493

Working with fog

Understanding fog effects

® Fog affects shape colarpt shape profile

@ Distant shapes have the fog color, but still have crisp profiles
® Set the background color to the fog color or your scene will look

Nodf'og Light fog Fog on Background

odd!

495

Working with fog

ExponentialFog class methods

® Methods orexponentialFog ~ set the fog density

Method

ExponentialFog()

void setDensity(float density)

® Fog density varies from 0.0 (no fog) and up (denser fog)

494

Working with fog

Using exponential fog

® ExponentialFog extends th&og class
@ Thickness increases exponentially with distance

® Use exponential fog to create thick, realistic fog
® Vary fogdensityto control thickness

effect = density * distance)
color = effect * shapeColor + (1-effect) * fogColor

496

Working with fog

ExponentialFog example code

® Create fog

ExponentialFog myFog = new ExponentialFog();
myFog.setColor(new Color3f(1.0f, 1.0f, 1.0f));
myFog.setDensity(1.0f);

® Set the influencing bounds

BoundingSphere myBounds = new BoundingSphere(
new Point3d(), 1000.0);
myFog.setInfluencingBounds(myBounds);

497 498

Working with fog Working with fog

ExponentialFog example Using linear fog

® LinearFog extends th&og class
@ Thickness increases linearly with distance

® Use linear fog to create more easily controlled fog, though less
i | realistic

Haze Light fog
® Setfront andbackdistances to control density

effect = (back - distance) / (back - front)
color = effect * shapeColor + (1-effect) * fogColor

Heavy fog Black fog

[ExExponentialFog]

499 500
Working with fog Working with fog
LinearFog class methods LinearFog example code
® Methods oninearFog ~ set the fog front and back distances ® Create fog
LinearFog myFog = new LinearFog();
MEIhOd myFog.setColor(new Color3f(1.0f, 1.0f, 1.0f));
LinearFog() myFog.setFrontDistance(1.0);

void setFrontDistance(double front) myFog.setBackDistance(30.0);

void setBackDistance(double back)

® Set the influencing bounds

® Default front distance is 0.0 BoundingSphere myBounds = new BoundingSphere(

® Default back distance is 1.0 new Point3d(), 1000.0);
myFog.setinfluencingBounds(myBounds);

501 502

Working with fog Working with fog

LinearFog example Depth cueing example
® For depth-cueing, use black linear fog
@ Set front distance to distance to center of shape
[[® Set back distance to distance to back of shape
=] . .

Distances wide apart Distances close together

[ExLinearFog]

Depth cueing off Depth cueing on

[ExDepthcue]

503 504

Working with fog Working with fog
Using fog influencing bounds and scope Fog class methods
® Fog effects are bounded to a volume and scoped to a list of ® Methods orrog set the influencing bounds and scope list
groups
® |dentical to light influencing bounds and scope Method
void setInfluencingBounds(Bounds bounds)
® By default, fog has no influencing bounds and affects nothing! void setinfluencingBoundingLeaf(BoundingLeaf leaf)
® Common error:forgetting to set influencing bounds void setScope(Group group, int index)
void addScope(Group group)
® By default, fog has universal scope and affects everything within void insertScope(Group group, int index)
void removeScope(int index)

its influencing bounds

505

Working with fog

Influencing bounds example code

® Set bounds relative to the fog’s coordinate system

LinearFog myFog = new LinearFog();
myFog.setinfluencingBounds(myBounds);

® Or relative to a bounding leaf's coordinate system

TransformGroup myGroup = new TransformGroup();
BoundingLeaf myLeaf = new BoundingLeaf(myBounds);
myGroup.addChild(myLeaf);

LiﬁearFog myFog = new LinearFog();
myFog.setInfluencingBoundingLeaf(myLeaf);

507

Working with fog

Clip class hierarchy

® Clp extendseaf

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.Node
javax.media.j3d.Leaf
javax.media.j3d.Clip

506

Working with fog

Clipping foggy shapes

® Shapes obscured by fog are still drawn

® To increase performance, you can clip away distant shapes using
aclip node

® You can clip without using fog too
® Fog helps cover up the abruptness of clipping

508

Working with fog

Clipping shapes

® Clipping chops away shapes, or parts of shapes, further away
from the viewer than back distance
® Also called afar clipping plane

® Clipping can be obscured using linear fog
® The fog back distance = the clip back distance

509

Working with fog

Using clip application bounds

® A clip is applied when:
® The viewer's activation radius intersectsapplication

bounds
® If multiple clips are active, the closest is used

® [f no clips are active, theiew object’s far clip distance is
used

® Clip bounding enables different clip planes for different areas of
the scene

511

Working with fog

Clip class methods

® Methods ortiip set the clip distance and application bounds

Method

Clip()

void setBackDistance(double back)

void setApplicationBounds(Bounds bounds)

void setApplicationBoundingLeaf(BoundingLeaf leaf)

510

Working with fog

Clipping shapes

® A clip’s application bounds is a bounded volume
® Sphere, box, polytope, or combination
® To make a global clip, use a huge bounding sphere

® By default, clip has no application bounds and affects nothing!
® Common error:forgetting to set application bounds

512

Working with fog

Clip example code

® Create aclip

Clip myClip = new Clip();
myClip.setBackDistance(30.0);

® Set its application bounds
BoundingSphere myBounds = new BoundingSphere(

new Point3d(), 1000.0);
myClip.setApplicationBounds(myBounds);

513

Working with fog

Clip example

X -

[ExClip]

515

Working with fog

Summary

® Fog affects shapes within the influencing bounds
@ Default isno influence so nothing affected!

® andwithin groups on the fog’s scope list
® Default isuniversal scopeso everything is affected (if within
influencing bounds)

® Clip is activated when the viewer’s activation radius intersects
the clip node’s application bounds
® Default isno application boundsso never takes effect

514

Working with fog

Summary

ExponentialFog ~ creates fog that increases in density
exponentially with distance to the user

LinearFog creates fog that increases in density linearly with
distance to the user

Both types of fog have a fog color and influencing bounds

clip cuts away shapes beyond a clip distance and has application
bounds

516

Conclusions

Where to find out mor 517

Introduction to Programming with Java 35 518

517

Conclusions

Where to find out more

® The Java 3D specification
@ http://www.javasoft.com/products/java-media/3D/

Or...

® The Java 3D API Specification
by Henry Sowizral, Kevin Rushforth, Michael Deering
published by Addison-Wesley

® The Java 3D site at Sun
@ http://www.sun.com/desktop/java3d

® The latest version of these tutorial notes are available at the Sun
Java 3D site

519

Building text shapes

Motivation 520
Example 521
Building 3D text 522
Building a 3D font 523
FontExtrusion and Font3D class hierarchy 524
FontExtrusion class methods; 525
FontExtrusion example cod 526
Font3D class method: 527
Font3D example cod 528
Text3D class hierarchy 529
Text3D class method: 530
Text3D class method: 531
Text3D example cod 532
Text3D exampl 533

Summary 534

518

Conclusions

Introduction to Programming with Java 3D

Thanks for coming!

520

Building text shapes

Motivation

® Text3D builds 3D text geometry for $hape3D
® Use to make annotation, signs, flying logos, etc.

® You could build your own 3D text from triangles and

® Text3D does it for you

521 522

Building text shapes Building text shapes

Example Building 3D text

® Building 3D text is a multi-step process
1. Select a 2D font witfava.awt.Font

o 2. Describe a 2D extrusion shape witfa.awt.Shape in a
i

FontExtrusion

3. Create a 3D font by extruding the 2D font along the
extrusion shape with mont3D

[ExText] 4. Create 3D text using a string aneb&sd in aTextad
523 524
Building text shapes Building text shapes
Building a 3D font FontExtrusion and Font3D class hierarchy
® Create a 3D font by sweeping a 2D font along a 2D extrusion ® FontExtrusion specifies an extrusion shape aaak3D specifies
shape a font

Class Hierarchy

java.lang.Object
javax.media.j3d.FontExtrusion
javax.media.j3d.Font3D

526

525
Building text shapes

Building text shapes
FontExtrusion class methods FontExtrusion example code

® For a simple extrusion, use the default:

select the extrusion

® Methods orrFontExtrusion
FontExtrusion myExtrude = new FontExtrusion();

Method
® This creates a straight-line extrusion shape 0.2 units deep

FontExtrusion()
void setExtrusionShape(Shape extrusionShape)

527 528
Building text shapes Building text shapes
Font3D example code

Font3D class methods

® Get a 2D font

® Methods orFont3dD build the 3D font from a 2D font and an
Font my2DFont = new Font(

extrusion
"Arial”, /I font name
Method Font.PLAIN, // font style
Font3D(Font font, FontExtrusion shape) 1), Il font size
GeometryStripArray[] getAsTriangles(int glyphCode) . .
Bounds getBounds(int glyphCode) ® Make a S|mple extrusion
FontExtrusion myExtrude = new FontExtrusion();

® Then build a 3D font

Font3D my3DFont = new Font3D(my2DFont, myExtrude);

529

Building text shapes

Text3D class hierarchy

® Text3D extendSseometry to describe 3D text geometry for a
Shape3D

530

Building text shapes

Text3D class methods

® Methods orText3D select the text string and 3D font

Method

Class Hierarchy

Text3D()

void setString(String string)

java.lang.Object
javax.media.j3d.SceneGraphObject

javax.media.j3d.NodeComponent
javax.media.j3d.Geometry
javax.media.j3d.Text3D

void setFont3D(Font3d font)

531

Building text shapes

Text3D class methods

® Additional methods omext3D select the starting position,
alignment, character spacing, and character path

Method

void setPosition(Point3f position)

void setAlignment(int alignment)

void setCharacterSpacing(float spacing)

void setPath(int Path)

® Alignment types includeLIGN_FIRST (default),ALIGN_LAST, and

ALIGN_CENTER
® Character paths includeTH_LEFT, PATH_RIGHT(default),

PATH_DOWNANAPATH_UP

532

Building text shapes

Text3D example code

® Build 3D text that says "Hello!", starting with a 2D font and

extrusion to build a 3D font

Font my2DFont = new Font(
“Arial*, /I font name
Font.PLAIN, //font style
1); // font size
FontExtrusion myExtrude = new FontExtrusion();
Font3D my3DFont = new Font3D(my2DFont, myExtrude);

® Then build 3D text geometry using the font

Text3D myText = new Text3D();
myText.setFont3D(my3DFont);
myText.setString("Hello!");

® Assemble the shape

Shape3D myShape = new Shape3D(myText, myAppear);

533 534

Building text shapes Building text shapes

Text3D example Summary

® A font extrusiordefines the depth of 3D text

® A 3D fontcombines a font extrusion with a 2D font to make 3D
0 character glyphs
T ® 3D textgeometry is built using a 3D font and a text string
[ExText]
535 536
: Controlling th f text
Controlling the appearance of textures oneiing e appeatance ol fexures
Motivation

Motivation 536 ® Texture image colors can replace, modulate, or blend with shape
Combining texture and shape color 537 color
Blending textures using alphe- 538 . .
Using texture modes 539 o Differenttexture modeare useful for different effects

Using texture modes 540 ® Some are faster to draw than others

Using texture modes: 541

Using texture mod 542 e Different texture images can be used at different distances

TextureAttributes class methods: 543

Texture mode example cod 544 between the Shape and t_he user i
Using texture mip-map modes 545 ® Use lower resolution images for distant shapes
Using texture minification filter: 546 ® This is known aMip_mapping
Using texture magnification filters: 547

Texture class method 548

Texture filter example cod 549

Texture filter exampl 550

Summary 551

537

Controlling the appearance of textures

538

Controlling the appearance of textures

Combining texture and shape colors Blending textures using alpha
® A texture image may contain: ® Alpha blendings a linear blending from one value to another as
® A red-green-blue color at each pixel alphagoes from 0.0 to 1.0:

® A transparency, calphavalue at each pixel

Value = (1.0-alpha)*ValueO + alpha*Valuel

® Typically, image color modulates shape color

® Darkly shaded parts of the shape use a darkened texture, etc. ® Texture alpha values can control color blending
® Texture color values can do spectral color filtering, using color as
three alpha values
539 540
Controlling the appearance of textures Controlling the appearance of textures
Using texture modes Using texture modes
® TheTexture modén TextureAttributes controls how texture Mode Result color Result transparency
pixels affect shape color REPLACE
Trgb Ta
REPLACE Texture color completely replaces the shape’s DECAL S LTI 0 Ta S
material color .
. MODULAT-_Sr *T ST
DECAL Texture color is blended as a decal on top of the gb " rgb a " a
shape’s material color BLEND Sigh (LT rg)*Brgt T rgn| SaTa

MODULATE exture color modulates (filters) the shape’s
material color ® Where:
BLEND Texture color blends the shape’s material color

Srgn IS the color of the shape being texture mapped

with an arbitraryblend color s, is the alpha of the shape being texture mapped

T IS the texture pixel color

T, is the texture pixel alpha

Bigp IS the shape blend color

B, is the shape blend alpha

541

Controlling the appearance of textures

Using texture modes

REPLACE DECAL

MODULATEvith white BLENDWith green

543

Controlling the appearance of textures

TextureAttributes class methods

® Methods orTextureAttributes

color
® REPLACEHS the default mode

® Black is the default blend color

set the texture mode and blend

Method

void setTextureMode(int mode)

void setTextureBlendColor(Color4f color)

® Texture modes includ@ODULATEDECAL BLENDQ andREPLACE
(default)

542

Controlling the appearance of textures

Using texture modes

® |n typical use:
® UseRePLACEfor emissive textures
® Glowing "neon" textures
® Textures where lighting is painted in

® UsemODULAT®N a white shape for shaded textures
® Most textured shaded surfaces

® UseBLENDON a colored shape for colorized textures
® Colorizing a grayscale woodgrain, marble, etc.

544

Controlling the appearance of textures

Texture mode example code

® CreaterTextureAttributes
TextureAttributes myTA = new TextureAttributes();

® Set the texture mode EDDULATE
myTA.setTextureMode(Texture. MODULATE);

@ Set the texture attributes on &pearance

Appearance myAppear = new Appearance();
myAppear.setTextureAttributes(myTA);

545

Controlling the appearance of textures

Using texture mip-map modes

® Mip-mappingis an anti-aliasing technique that uses different
texture versions (levels) at different distances from the user
® You can have any number lefrels
® Level 0 is the base image used when the user is close

® Mip-maps can be computed automatically from a base image:
® Use a mip-mapping mode BASE_LEVEL

® Or you can specify each image level explicitly:
® Use a mip-mapping mode BLTI_LEVEL_MIPMAP

547

Controlling the appearance of textures

Using texture magnification filters

® A Magnification filtercontrols how a texture is interpolated when
a scene pixel maps to less than one texel

FASTEST Use fastest method

NICESET Use best looking method

BASE_LEVEL POINT Use nearest texel in level 0 map

BASE_LEVEL_LINEARBjlinearly interpolate 4 nearest texels in
level 0 map

546

Controlling the appearance of textures

Using texture minification filters

® A Minification filter controls how a texture is interpolated when a
scene pixel maps to multiple texture pixels (texels)

FASTEST Use fastest method
NICEST Use best looking method
BASE_LEVEL POINT Use nearest texel in level 0 map
BASE_LEVEL_LINEAR Bjlinearly interpolate 4 nearest texels

in level 0 map
MULTI_LEVEL_POINT Use nearest texel in mip-mapped maps
MULTI_LEVEL_LINEAR Bjlinearly interpolate 4 nearest texels

in mip-mapped maps

548

Controlling the appearance of textures

Texture class methods

® Methods orrexture control mip-mapping and filtering
@ BASE_LEVELIS the default mip-map mode
® BASE_LEVEL_POINTIs the default filter

Method

void setMipMapMode(int mode)

void setMinFilter(int minFilter)

void setMagFilter(int maxFilter)

549

Controlling the appearance of textures

Texture filter example code

® Load a texture image

TextureLoader myLoader = new TextureLoader("brick.jp (
ImageComponent2D mylmage = myLoader.getimage();

® Create aexture2D using the image, and turn it on
Texture2D myTex = new Texture2D();
myTex.setimage(0, mylmage);
myTex.setEnable(true);

® Set the filtering types

myTex.setMagFilter(Texture.BASE_LEVEL_POINT);
myTex.setMinFilter(Texture.BASE_LEVEL_POINT);

® Create amppearance and set the texture in it

Appearance myAppear = new Appearance();
myAppear.setTexture(myTex);

551

Controlling the appearance of textures

Summary

® Thetexture modeontrols how texture color and alpha values
REPLACE MODULATEBLEND Or DECALWiIth the shape color

® Mip-mappinguses different versions (levels) of an image at
different distances from the user

® Minification andMagnificationfilters control how individual, or
neighboring texture pixels contribute to an image

550

Controlling the appearance of textures

Texture filter example

-1

BASE_LEVEL_POINT
No interpolation

552

s

BASE_LEVEL_LINEAR
Linear interpolation of 4
nearest neighbors

Adding sound

Motivation 553
Example 554
Types of sounds- 555
Sound class hierarchy 556
Loading sound data 557
MediaContainer class hierarchy 558
MediaContainer class method: 559
Looking at sound envelopes- 560
Looking at sound envelopes 561
Looping sounds 562
Controlling sound: 563
Sound class method 564
Using background sound 565
BackgroundSound class methoet 566
BackgroundSound example coek 567
Using point sounds: 568
Varying gain with distanc 569
PointSound class methods 570
PointSound example codk 571
PointSound example codk 572
Using cone sound 573
Varying gain with distanc 574
Varying gain and frequency with angk 575
ConeSound class methoe 576
ConeSound example code- 577
ConeSound example code- 578
Setting scheduling bound 579
Sound class method 580
Sound exampl 581
Controlling the sound releas 582
Enabling continuous playback 583
Prioritizing sounds: 584
Sound class method 585
Summary 586

553

Adding sound

Motivation

® You can add sounds to your environment:
@ Localized sounds - sounds with a position
® User interface sounds (clicks, alerts)
® Data sonification
® Game sounds (laser blasters, monster growls)

® Background sounds - sounds filling an environment
® Presentation sounds (voice over, narration)
® Environment sounds (ocean waves, wind)
® Background music

555

Adding sound
Types of sounds

® Java 3D provides three types of sounds:
® Background
® Point
® Cone

® All three types of sounds have:
® Sound data to play
® An initial gain (overall volume)
® Looping parameters
® Playback priority
® Scheduling bounds (like a behavior)

554

Adding sound

Example

[ExSound]

556

Adding sound
Sound class hierarchy

® All sounds share attributes inherited frepund

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject
javax.media.j3d.Node
javax.media.j3d.Leaf
javax.media.j3d.Sound
javax.media.j3d.BackgroundSound
javax.media.j3d.PointSound
javax.media.j3d.ConeSound

557

Adding sound

Loading sound data

® Sound nodes plagound datadescribing a digital waveform
@ Data loaded by ®ediaContainer ~ from
® A file on disk or on the Web

® Typical sound file formats include:
® AlF: standard cross-platform format
® Au standard Sun format
® wAv standard PC format

559

Adding sound

MediaContainer class methods

® Methods ormediaContainer ~ select the file path or URL for the

sound file
® Setting the URL triggers loading of the sound

558

Adding sound

MediaContainer class hierarchy

® TheMediaContainer class provides functionality to load sound
files given a URL or file path

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject

javax.media.j3d.NodeComponent

javax.media.j3d.MediaContainer

Method

MediaContainer()

void setUrl(String path)

void setUrl(URL url)

560

Adding sound

Looking at sound envelopes

® Sound files have a built-in amplitu@velopewith three stages:
® Attack the start of the sound
® Sustain the body of the sound
® Releasethe ending decay of the sound

562

561
Adding sound

Adding sound
Looking at sound envelopes Looping sounds

® To sustaina sound, you can loop betwdenp points

® The envelope is part of the sound data loaded by a
MediaContainer ® Authored using a sound editor
® Set sound envelopes using a sound editor ® They usually bracket thBustainstage
® Amplitude isnotramped by Java 3D ® If no loop points, loop defaults to entire sound
® Loops can run a number of times, or forever

563 564

Adding sound Adding sound
Controlling sounds Sound class methods

® Methods orsound select the sound data, turn on the sound, set its

® Sounds may be enabled and disabled
® Enabling a sound makessithedulable volume, and loop sound playback
® By default, sounds are disabled, have a gain of 1.0, and are
® The sound will start to play if the sound’s scheduling bounds not looped
intersect the viewer’s activation radius
Method
® Overall sound volume may be controlled with a gain void setSoundData(MediaContainer sound)
multiplication factor void setEnable(boolean onOff)
void setInitialGain(float amplitude)
void setLoop(int count)

® Special loop count values:
® A 0 count loops 0 times (play once through)

® A -1 count loops forever

565 566

Adding sound Adding sound
Using background sounds BackgroundSound class methods
® BackgroundSound extends the&ound class ® BackgroundSound adds no additional methods beyond those of
® Background sound waves come from all directions, flooding Sound
an environment at constant volume
® Similar idea as aAmbientLight Method
BackgroundSound()

® Use background sounds for:
@ Presentation sounds (voice over, narration)
® Environment sounds (ocean waves, wind)
® Background music

® You can have multiple background sounds playing

567 568
Adding sound Adding sound
BackgroundSound example code Using point sounds
® Load sound data ® PointSound extends theound class
® Sound waves emit radially from a point in all directions
MediaContainer myWave = new MediaContainer("canon.wa \ ® Similar idea as RointLight

® Create a sound . . .
® Use point sounds to simulate local sounds like:

BackgroundSound mySound = new BackgroundSound(); ® User inte_rf_ace_ sounds (clicks, alerts)
mySound.setSoundData(myWave); @ Data sonification
mySound.setEnable(true); ® Game sounds (laser blasters, monster growls)

mySound.setlnitialGain(1.0f);
mySound.setLoop(-1); // Loop forever
® You can have multiple point sounds playing
® Set the scheduling bounds

BoundingSphere myBounds = new BoundingSphere(
new Point3d(), 1000.0);
mySound.setSchedulingBounds(myBounds);

569

Adding sound

Varying gain with distance

® Point sound waves aegtenuated

® Amplitude decreases as the viewer moves away
® Attenuation is controlled by a list of value pairs:

® Distancefrom sound position

® Gainat that distance

571

Adding sound
PointSound example code

570

Adding sound

PointSound class methods

® Methods orpointSound ~ set the sound position and attenuation
® The default position is (0.0,0.0,0.0) with no attenuation

Method

PointSound()

void setPosition(Point3f pos)

void setDistanceGain(Point2ff] atten)

® | oad sound data
MediaContainer myWave = new MediaContainer("willow1.
® Create an attenuation array

Point2f[] myAtten = {
new Point2f(100.0f, 1.0f),
new Point2f(350.0f, 0.5f),
new Point2f(600.0f, 0.0f)

572

Adding sound
PointSound example code

® Create a sound

PointSound mySound = new PointSound();
mySound.setSoundData(myWave);
mySound.setEnable(true);
mySound.setlnitialGain(1.0f);

mySound.setLoop(-1); // Loop forever
mySound.setPosition(new Point3f(0.0f, 1.0f, 0.0f)
mySound.setDistanceGain(myAtten);

® Set the scheduling bounds
BoundingSphere myBounds = new BoundingSphere(

new Point3d(), 1000.0);
mySound.setSchedulingBounds(myBounds);

573 574
Adding sound

Adding sound
Using cone sounds Varying gain with distance

® ConeSound extends theointSound class ® ConeSound extendsointSound support for attenuation
® Sound waves emit radially from a point in a direction, @ PointSound Uses one list of distance-gain pairs that apply for

constrained to a cone all directions
® Similar idea as apotLight
® Conesound usedwo lists of distance-gain pairs that apply in
® Use cone sounds to simulate local directed sounds like: front and back directions
® Loud speakers ® The cone’s aim direction is the front direction
® If no back list is given, the front list is used

® Musical instruments

® You can have multiple cone sounds playing

575 576
Adding sound

Adding sound
Varying gain and frequency with angle ConeSound class methods

® Real-world sound sources emit in a direction ® Methods orconesound aim the sound, set its distance gain front

® Volume (gain) and frequency content varies with angle and back, and control angular attenuation

® By default, cone sounds are aimed in the positive Z direction
® ConeSound angular attenuation simulates this effect with a list of with no distance or angular attenuation
angle-gain-filter triples

® Anglefrom the cone’s front direction

® Gainat that angle

® Cutoff frequencyor a low-pass filter at that angle

Method

ConeSound()

void setDirection(Vector3f dir)

void setDistanceGain(Point2f[] front, Point2f[] back)
void setBackDistanceGain(Point2f[] back)

void setAngularAttenuation(Point3f[] atten)

® Attenuation angles are in the range 0.0 to PI radians

577

Adding sound

ConeSound example code

® | oad sound data
MediaContainer myWave = new MediaContainer("willow1. \
® Create attenuation arrays

Point2f[] myFrontAtten = {
new Point2f(100.0f, 1.0f),
new Point2f(350.0f, 0.5f),
new Point2f(600.0f, 0.0f)

h

Point2f[] myBackAtten = {
new Point2f(50.0f, 1.0f),
new Point2f(100.0f, 0.5f),
new Point2f(200.0f, 0.0f)

Point3f[] myAngular = {
new Point3f(0.000f, 1.0f, 20000.0f),
new Point3f(0.785f, 0.5f, 5000.0f),
new Point3f(1.571f, 0.0f, 2000.0f),

579

Adding sound

Setting scheduling bounds

® A sound is hearable (if it is playing) when:
® The viewer's activation radius intersectsstheduling
bounds
® Multiple sounds can be active at once
@ |dentical to behavior scheduling

® Sound bounding enables different sounds for different areas of
the scene

® By default, sounds have no scheduling bounds and are never
hearable!
® Common error:forgetting to set scheduling bounds

578

Adding sound

ConeSound example code

® Create a sound

ConeSound mySound = new ConeSound();
mySound.setSoundData(myWave);

mySound.setEnable(true);

mySound.setlnitialGain(1.0f);

mySound.setLoop(-1); // Loop forever
mySound.setPosition(new Point3f(0.0f, 1.0f, 0.0f)
mySound.setDirection(new Vector3f(0.0f, 0.0f, 1.0f
mySound.setDistanceGain(myFrontAtten, myBackAtten);
mySound.setAngularAttenuation(myAngular);

® Set the scheduling bounds

BoundingSphere myBounds = new BoundingSphere(
new Point3d(), 1000.0);
mySound.setSchedulingBounds(myBounds);

580

Adding sound
Sound class methods

® Methods orsound set the scheduling bounds

Method

void setSchedulingBounds(Bounds bounds)

void setSchedulingBoundingLeaf(BoundingLeaf leaf)

581

Adding sound

Sound example

[ExSound]

583

Adding sound

Enabling continuous playback

® When a sound is unscheduled (viewer moves out of scheduling

bounds):

® Enablecontinuousplayback to keep it going silently
® |t resumesin progressf scheduled again

® Disablecontinuousplayback to skip silent playback
® |t starts at the beginning if scheduled again

Continuous enabled

Continuous disabled

582

Adding sound

Controlling the sound release

® When you disable a sound:
® Enable the release to let the sound finish playing, without
further loops
® Disable the release to stop it immediately

Release enabled Release disabled

584

Adding sound
Prioritizing sounds

® Sound hardware and software limits the number of simultaneous
sounds
® Worst case is 4 point/cone sounds and 7 background sounds

® You can prioritize your sounds
® A low priority sound may be temporarily muted when a high
priority sound needs to be played

585

Adding sound

Sound class methods

® Methods orsound control the release, continuous playback, and
priority
® By default, the release and continuous playback or disabled
and the priority is 1.0

Method

void setReleaseEnable(boolean onOff)

void setContinuousEnable(boolean onOff)

void setPriority(float ranking)

587

Controlling the sound environment

Motivation 588
Soundscape class hierarchy 589
Setting Soundscape application bounet 590
Soundscape class methoe 591
Types of aural attributes: 592
AuralAttributes class hierarchy 593
Controlling reverberation 594
Controlling reverberation 595
AuralAttributes class methods 596
Controlling sound delay with distan: 597
Controlling frequency filtering with distance- 598
AuralAttributes class methods 599
Controlling Doppler shift 600
AuralAttributes class method: 601
AuralAttributes example cod: 602

Summary 603

586

Adding sound

Summary

® All sounds use sound data fronmediaContainer

® For all sounds you can turn them on or off, set their gain, release

style, continuous playback style, looping, priority, and scheduling
bounds

® BackgroundSound creates a sound that emits everywhere, flooding

the area with sound

® PointSound creates a sound that emits from a position, radially in

all directions, with distance attenuation

® ConeSound creates a sound that emits from a position in a forward

direction, with distance and angular attenuation

® Sounds are hearable (if playing) when the viewer’s activation

radius intersects the sound’s scheduling bounds
® Default isno scheduling boundso nothing is hearable!

588

Controlling the sound environment

Motivation

® Thesound classes control features of the sound

® To enhance realism, you can control features of the environment
too

® Usesoundscapeandaural attributesto
® Add reverberation (echos)
® Use different reverberation for different rooms
® Control doppler pitch shift
® Control frequency filtering with distance

589

Controlling the sound environment

Soundscape class hierarchy

® All soundscape features are controlled usiagdscape

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject

javax.media.j3d.Node
javax.media.j3d.Leaf
javax.media.j3d.Soundscape

591

Controlling the sound environment

Soundscape class methods

® Methods orsoundscape Set the aural attributes and application
bounds

Method

Soundscape()

void setApplicationBounds(Bounds bounds)

void setApplicationBoundingLeaf(BoundingLeaf leaf)
void setAuralAttributes(AuralAttributes aural)

590

Controlling the sound environment

Setting Soundscape application bounds

® A Soundscapeaffects sound when:
® The viewer's activation radius intersectsagplication
bounds
® |dentical to background application bounds
® |f multiple soundscapes active, closest one used
® [f no soundscapes active, no reverb, filtering, or doppler shift
takes place

® By default, soundscapes have no application bounds and are
never applied!
® Common error:forgetting to set application bounds

592

Controlling the sound environment

Types of aural attributes

® Java 3D provides three types of aural attributes:
® Reverberation (echo)
® Distance filtering
® Doppler Shift

® All aural attributes types are controlled withamalAttributes
node

593

Controlling the sound environment

AuralAttributes class hierarchy

® All aural attributes features are controlled usigiAttributes

Class Hierarchy

java.lang.Object
javax.media.j3d.SceneGraphObject

javax.media.j3d.NodeComponent
javax.media.j3d.AuralAttributes

595

Controlling the sound environment

Controlling reverberation

® Reverberation uses a feedback loop:
® Each echo is a trip around the feedback loop

594

Controlling the sound environment

Controlling reverberation

® In the real world, sound bounces off walls, floors, etc
@ [f the bounce surface is hard, we hear a perfect echo
® If it is soft, some frequencies are absorbed
® The set of all echos Reverberation

® Java 3D provides a simplified model of reverberation

® Sounds echo afterraverb delaytime
® Echo attenuation is controlled byeflection coefficient

® Echos stop after @verb order(count)

596

Controlling the sound environment

AuralAttributes class methods

® Methods omuralAttributes control reverberation
@ All values are zero by default

Method

AuralAttributes()

void setReverbDelay(float delay)

void setReflectionCoefficient(float coeff)

void setReverbOrder(int order)

® A reverb order of -1 repeats echos until they die out

597

Controlling the sound environment

Controlling sound delay with distance

® When a sound starts playing, there is a delay before it is heard
@ [t takes time for sound to travel from source to listener

® The default speed of sound is 0.344 meters/millisecond
® You can scale this up or down usirmdjoff
® Values 0.0 <= 1.0 slow down sound
® Values > 1.0 speed up sound
® A 0.0 value mutes the sound

599

Controlling the sound environment

AuralAttributes class methods

® Methods omuralAttributes

control gain, filtering, and rolloff
@ By default, there is no filtering and gain and rolloff are 1.0

Method

void setAttributeGain(float gain)

void setRolloff(float rolloff)

void setDistanceFilter(Point2f[] atten)

598

Controlling the sound environment

Controlling frequency filtering with distance

® An attribute gaincontrols overall volume

® Sound waves arfiltered, decreasing high frequency content as
the viewer moves away

® Attenuation is controlled by a list of value pairs:

@ Distancefrom sound position
® Cutoff frequencyor a low-pass filter at that distance

600

Controlling the sound environment

Controlling Doppler shift

® Doppler shift varies pitch as the sound or viewer moves
@ Set thevelocity scale factoto scale the relative velocity
between the sound and viewer

® A frequency scale factaccentuates or dampens the effect

601

Controlling the sound environment

AuralAttributes class methods

® Methods omuralAttributes control frequency and velocity
scaling for Doppler shift
® By default, frequencies are scaled by 1.0 and velocity by 0.0

Method

void setFrequencyScaleFactor(float scale)

void setVelocityScaleFactor(float scale)

603

Controlling the sound environment

Summary

® Soundscape anchors a set @furalAttributes to be applied
within a bounded area

® AuralAttributes control reverberation, distance filtering, and
Doppler shift within that area

® Soundscapes apply when the viewer's activation radius intersects

the soundscape’s application bounds
® Default isno application boundsso nothing is affected!

602

Controlling the sound environment

AuralAttributes example code

® Set up aural attributes

AuralAttributes myAural = new AuralAttributes();
myAural.setReverbDelay(2.0f);
myAural.setReverbOrder(-1); // Until dies out
myAural.setReflectionCoefficient(0.2f); // dampen

® Create the sound scape

Soundscape myScape = new Soundscape();
myScape.setAuralAttributes(myAural);

® Set the application bounds

BoundingSphere myBounds = new BoundingSphere(
new Point3d(), 1000.0);
myScape.setApplicationBounds(myBounds);

